Math, asked by lekkalalakshmi3244, 12 hours ago

the quadratic equation whose roots are -2,-3√2​

Answers

Answered by DeeznutzUwU
1

      \bold{Answer:}

      \boxed{x^{2} +(2+3\sqrt2)x + 6\sqrt2 = 0}

      \bold{Step-by-step}  \bold{explaination}

      \text{The given roots are }-2,-3\sqrt{2}

       \text{We know that a quadratic equation is of the form }\\x^{2} -(\text{Sum of roots})x + (\text{Product of roots})

\implies \text{Sum of roots} = -2+(-3\sqrt{2}) = -(2+3\sqrt{2})

\implies \text{Product of roots} = (-2)(-3\sqrt{2}) = 6\sqrt{2}

\implies \text{The quadratic equation} = x^{2} -[-(2+3\sqrt2)]x + 6\sqrt2

                                        \implies x^{2} +(2+3\sqrt2)x + 6\sqrt2 = 0

Similar questions