Math, asked by nikhilvaishnav61, 5 months ago

The quadratic equation whose roots are 7 + √3 and 7 - √3 is
a) x2 + 14x - 46 = 0
b) x2 - 14x + 46 = 0
c) x2 - 14x - 46 = 0
d) x2 + 14x + 46 = 0​

Answers

Answered by ritikamishra119
1

Answer:

please tell me also

Step-by-step explanation:

please please please please

Answered by Anonymous
15

 \LARGE \bf \color{pink}Hola!

GiveN :

 \rightsquigarrow \sf \: Two \:  \:  roots \:  \:  are  \\  \sf1) \: 7 +  \sqrt{3}  \\  \sf2) \: 7 -  \sqrt{3}

To FinD :

The correct polynomial,

 \begin{array}{c} \:  \sf \: a)   \: {x}^{2}  + 14x - 46 \\  \sf \: b) {x}^{2}  - 14x + 46  \\  \sf \: c) \:  {x}^{2}  - 14x - 46 \\  \sf \: d) \:  {x}^{2} + 14x + 46 \end{array}

SolutioN :

 \circ \:  \:  \sf \: we \:  \: know, \: for \:  \: any \:  \: quadratic \:  \: polynomial

 \:  \:  \:  \sf \:  \: {x}^{2}  - (sum \:  \: of \:  \: roots)x +  \: product \:  \: of \:  \: roots = 0

Hence, the eqn will be

 \dashrightarrow \sf \:  {x}^{2}  - (7 +  \sqrt{3}  + 7 -  \sqrt{3} )x + (7 +  \sqrt{3} )(7 -  \sqrt{3} ) = 0 \\

 \dashrightarrow \sf \:  {x}^{2}  - (  14   )x + 46 = 0\\

 \:    \therefore \:  \:  \:  \:  \underline{ \boxed{ \sf{ b) \:  \:  {x}^{2}  - 14x + 46 = 0}}}

________________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions