Math, asked by Dhruv66911, 6 months ago

The quadratic equation with real coefficient whose one root is 5+underoot 5/2 is

Answers

Answered by suhail2070
0

Answer:

{x}^{2}  - 5x + 10 = 0

Step-by-step explanation:

 \alpha  =  \frac{5 +  \sqrt{5} }{2}  \\  \\  therefore \:  \:  \:  \: \beta  =  \frac{5 -  \sqrt{5} }{2}  \\  \\  \\  \alpha  +  \beta  =  \frac{5 +  \sqrt{5} }{2}  +  \frac{5 -  \sqrt{5} }{2}  = 10 \div 2 = 5 \\  \\  \\  \alpha  \beta  = ( \frac{5 +  \sqrt{5} }{2} )( \frac{5 -  \sqrt{5} }{2} ) = (25 - 5) \div 2 = \frac{20}{2}  = 10 \\  \\  \\ equation \: is \:  \:  \:  \:  {x}^{2}  - 5x + 10 = 0

Similar questions