Math, asked by Anonymous, 9 months ago

the quadratic equation X square - 4 x + K is equal to zero a distinct real root if.........​

Answers

Answered by BrainlyPopularman
6

QUESTION :–

● The quadratic equation x² - 4 x + K = 0 have Distinct and Real root. Then find k.

ANSWER :

 \\ { \bold { k \leqslant  4 }} \\

EXPLANATION :

GIVEN :

A quadratic equation => x² - 4x + k = 0.

Quadratic equation have Distinct and Real root.

TO FIND :

Value of 'k'

SOLUTION :

If the roots of a Quadratic equation are Real and Distinct then Discriminant will be-

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:{ \boxed { \huge { \bold { D   \geqslant  0}}}} \\

We know that

 \\ { \implies \bold { D =  {b}^{2}  - 4ac}} \\

 \\ { \implies \bold { D =  {(-4)}^{2}  - 4(1)(k)}} \\

 \\ { \implies \bold { D =  16  - 4k}} \\

But we know that

 \\ { \implies { \bold { D   \geqslant  0}}} \\

 \\ { \implies \bold { 16  - 4k  \geqslant  0 }} \\

 \\ { \implies \bold { 16   \geqslant  4k }} \\

 \\ { \implies \bold { 4k \leqslant  16 }} \\

 \\ { \implies \bold { k \leqslant  4 }} \\

Answered by Anonymous
2

Answer:

I hope this helps u plz mark me as brainlist.......

Attachments:
Similar questions