Math, asked by NeeliSatwik, 1 month ago

the quadratic polynomial whose zeroes are √2 and √6/2 are​

Answers

Answered by LoverBoy346
0

Step-by-step explanation:

Let, \:  \alpha  \: and \:  \beta  \: be \: the \: zeroes \: of \: polynomial

  \color{blue}\boxed{  \huge{ \mathbb{ \colorbox{pink}{Given :-}}}}

 \bold{ \: :   \implies\alpha  =   \sqrt{2} }

 \bold{ \:  :   \implies\beta   = \frac{ \sqrt{6} }{2} }

 \mathtt{We  \: know \:  that,}

sum \: of \: zeroes =  \alpha  +  \beta  =  \sqrt{2}  +  \frac{ \sqrt{6} }{2}

 \implies \frac{2 \sqrt{2}  + 6}{2}

 \implies \frac{ \not2( \sqrt{2} + 3 )}{ \not2}

product \: of \: zeroes =  \alpha  \times  \beta  =  \sqrt{2}  \times  \frac{ \sqrt{6} }{2}

 \implies \frac{ \sqrt{12} }{2}

 \mathtt{We  \: also  \: know  \: that,}

 {x}^{2}  - ( \alpha  +  \beta  )x  + ( \alpha  \times  \beta ) = 0

 {x}^{2}  -  \sqrt{2} x + 3x +  \frac{ \sqrt{12} }{2}  = 0

2 {x}^{2}  - (2 \sqrt{2} x + 6x) +   \sqrt{12}  = 0

2 {x}^{2}  - (2 \sqrt{2} x + 6x) +   \sqrt{12}  = 0 \: is \: the \: required \: polynimal

Similar questions