Math, asked by Tkgmailcom9629, 11 months ago

The quadratic polynomial whose zeros are 3/5 and -1/2 . The quadratic polynomial is

Answers

Answered by rushil66
14

Answer:

alpha+beeta = 3/5+-1/2

=1/10

alpha ×beeta =3/5×-1/2

=-3/10

x^2-(alpha + beeta)x + alpha×beeta

x^2-1/2x + -3/10

x^2-5x-3

Therefore answer is x^2 -5x -3

please mark as brainliest

Answered by Anonymous
1

The quadratic polynomial whose zeroes are,

5 \sqrt{3} ,5 -  \sqrt{3}

 \alpha , \beta  \: is \: f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

where k is any non-zero real no.

THE QUADRATIC POLY POLYNOMIAL WHOSE ZEROES ARE

5 \sqrt{3} ,5 -  \sqrt{3}

 f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

 f(x) = k[ {x}^{2} - ( 5  \cancel{ +  \sqrt{3}}  + 5  \cancel{ -  \sqrt{3}} )x +    (5 +  \sqrt{3}   ) (5 -  \sqrt{3}  ) ]

 f(x) = k[ {x}^{2} -10x + ( {5)}^{2}  -  ({ \sqrt{3} )}^{2}  ]

 f(x) = k[ {x}^{2} -10x + (25  - 3)]

 f(x) = k[ {x}^{2} -10x + 22]

so, the QUADRATIC polynomial is

 f(x) = k[ {x}^{2} -10x + 22]

Similar questions