The question is attached with the link
Answers
The sum of interior angles of a polygon =(n−2)×180o
⇒ The sum of interior angles of a hexagon =(6−2)×180o
=4×180o
=720o
⇒ Measure of each angle of hexagon =6720o=120o
In △PUT,
⇒ PU=UT [ Sides of regular hexagon are equal ]
⇒ ∠UTP=∠UPT [ Equal sides have equal angles opposite to them ]
Now, ∠PUT+∠UTP+∠UPT=180o.
⇒ 120o+2∠UPT=180o.
⇒ 2∠UPT=60o
⇒ ∠UPT=30o
Now, ∠QPU=120o.
⇒ ∠QP+30o=120o.
⇒ ∠QP=90o.
⇒ △PU≅△TSR [ By SAS congruence theorem ]
⇒ P=TR [ C.P.C.T]
In △PTQ and △RTQ,
⇒ P=QR [ Sides of regular hexagon ]
⇒ P
Answer:
The sum of interior angles of a polygon =(n−2)×180o
⇒ The sum of interior angles of a hexagon =(6−2)×180o
=4×180o
=720o
⇒ Measure of each angle of hexagon =6720o=120o
In △PUT,
⇒ PU=UT [ Sides of regular hexagon are equal ]
⇒ ∠UTP=∠UPT [ Equal sides have equal angles opposite to them ]
Now, ∠PUT+∠UTP+∠UPT=180o.
⇒ 120o+2∠UPT=180o.
⇒ 2∠UPT=60o
⇒ ∠UPT=30o
Now, ∠QPU=120o.
⇒ ∠QP+30o=120o.
⇒ ∠QP=90o.
⇒ △PU≅△TSR [ By SAS congruence theorem ]
⇒ P=TR [ C.P.C.T]
In △PTQ and △RTQ,
⇒ P=QR [ Sides of regular hexagon ]
⇒ P
Explanation: