Math, asked by Anonymous, 5 months ago

the question is from definite integrals​

Attachments:

Answers

Answered by Asterinn
9

 \rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \frac{1}{4 + 5 \: cos \: x} dx

We know that :-

  \rm \: cos \: 2( \frac{x}{2} ) = cos \:  x \\  \\ \boxed{ \rm cos \: 2( \frac{x}{2} ) =  \dfrac{1 -  {tan}^{2} \frac{x}{2}  }{1 +  {tan}^{2} \frac{x}{2}  } }

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \frac{1}{4 + 5 \bigg(\dfrac{1 -  {tan}^{2} \frac{x}{2}  }{1 +  {tan}^{2} \frac{x}{2}  } \bigg)} dx

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \frac{1 +  {tan}^{2} \frac{x}{2}}{4 (1 +  {tan}^{2} \frac{x}{2})+ 5(1 -  {tan}^{2} \frac{x}{2} )} dx

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \frac{1 +  {tan}^{2} \frac{x}{2}}{4 (1 +  {tan}^{2} \frac{x}{2})+ 5(1 -  {tan}^{2} \frac{x}{2} )} dx

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{4} }  \rm \frac{1 +  {tan}^{2} \frac{x}{2}}{4 + 4 \:  {tan}^{2} \frac{x}{2}+ 5 - 5 \:  {tan}^{2} \frac{x}{2} } dx

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \frac{1 +  {tan}^{2} \frac{x}{2}}{9 - \:  {tan}^{2} \frac{x}{2} } dx

\rm \longrightarrow \displaystyle \int_{0}^{ \rm \frac{\pi}{2} }  \rm \dfrac{  {sec}^{2} \frac{x}{2} }{9 - \:  {tan}^{2} \frac{x}{2} } dx

 \rm let \:   \:  \:  {tan} \: \frac{x}{2} = t \\  \\ \rm \frac{1}{2}   \times   {sec}^{2}  \frac{x}{2} \:  dx  = dt\\  \\ \rm    {sec}^{2}  \frac{x}{2} \:  dx  =2 dt

 \rm \: if \: x =  \frac{\pi}{2}      \:  \: then : \\  \\ \:  \rm tan \frac{\pi}{4}  = 1 = t \\  \\ \rm \: if \: x = 0     \:  \: then : \\  \\ \:  \rm tan 0= 0= t

\rm \longrightarrow \displaystyle \int_{0}^{ \rm 1}  \rm \dfrac{  2 \: dt}{9 - \:  {t}^{2}  }

\rm \longrightarrow 2\displaystyle \int_{0}^{ \rm 1 }  \rm \dfrac{   \: dt}{ {3}^{2} - \:  {t}^{2}  }

\rm \longrightarrow 2\displaystyle \bigg[ \rm\frac{1}{6} \:  log \: \bigg |   \dfrac{  3 + t}{ {3} - \:  {t} } \bigg |\bigg ]_{0}^{ \rm1}

\rm \longrightarrow \displaystyle  \rm\frac{1}{3} \bigg(  log \: \bigg |   \dfrac{  3 + 1}{ {3} - \:  1 } \bigg | - log \: \bigg |   \dfrac{  3 + 0}{ {3} - \:  0 } \bigg |\bigg)

\rm \longrightarrow \displaystyle  \rm\frac{1}{3} \bigg(  log \:   \dfrac{ 4}{ 2} - log \:   \dfrac{  3}{ {3}  } \bigg)

\rm \longrightarrow \displaystyle  \rm\frac{1}{3} \bigg(  log \: 2 - log \:   1 \bigg)

\rm \longrightarrow \displaystyle  \rm\frac{1}{3} \bigg(  log \: 2  - 0 \bigg)

\rm \longrightarrow \displaystyle  \rm\frac{log \: 2}{3}

Similar questions