the question is given below
Attachments:
Answers
Answered by
1
Consider the given integral.
I=∫
(1−sinx)(1+sin
2
x)
2cosx
dx
Let t=sinx
dt=cosxdx
Therefore,
I=∫
(1−t)(1+t
2
)
2
dt
I=∫(
1−t
1
+
t
2
+1
t+1
)dt
I=−∫
t−1
1
dt+
2
1
∫
t
2
+1
2t
dt+∫
t
2
+1
1
dt
I=−ln(t−1)+
2
1
ln(t
2
+1)+tan
−1
t+C
On putting the value of t, we get
I=−ln(sinx−1)+
2
1
ln(sin
2
x+1)+tan
−1
(sinx)+C
Hence, this is the answer
Similar questions