Math, asked by jaivardhan08, 5 months ago

The question is in the pic
plz answer it fast

Attachments:

Answers

Answered by BrainlyPopularman
15

GIVEN :

  \\ \bf  \: \to \: \sqrt{x} = 20 \\

  \\ \bf  \: \to \: \sqrt{x} .\sqrt{y} = 50  \sqrt{z} \\

  \\ \bf  \: \to \: \sqrt{x} .\sqrt{y} .\sqrt{z} = 200 \\

TO FIND :

• Value of  \bf\sqrt{x} + \sqrt{y}  + \sqrt{z} = ?

SOLUTION :

  \\ \bf  \: \to \: \sqrt{x} = 20  \:  \:  \:  \:  \:  -  -  - eq.(1) \\

  \\ \bf  \: \to \: \sqrt{x} .\sqrt{y} = 50  \sqrt{z}  \:  \:  \:  \:  \:  -  -  - eq.(2) \\

  \\ \bf  \: \to \: \sqrt{x} .\sqrt{y} .\sqrt{z} = 200  \:  \:  \:  \:  \:  -  -  - eq.(3) \\

• Put the value of √x from eq.(1) in eq.(2) –

  \\ \bf  \: \implies\: (20) .\sqrt{y} = 50  \sqrt{z}\\

  \\ \bf  \: \implies\: \sqrt{y} =  \dfrac{50}{20}  \sqrt{z}\\

  \\ \bf  \: \implies\: \sqrt{y} =  \dfrac{5}{2}  \sqrt{z}\\

• Now multiply with √z –

  \\ \bf  \: \implies\: \sqrt{y}. \sqrt{z} =  \dfrac{5}{2}  \sqrt{z}. \sqrt{z} \\

  \\ \bf  \: \implies\: \sqrt{y}. \sqrt{z} =  \dfrac{5}{2}z\:  \:  \:  \:  \:  -  -  - eq.(4)\\

• Put the value of √x from eq.(1) in eq.(3) –

  \\ \bf  \: \implies \: (20).\sqrt{y} .\sqrt{z} = 200 \\

  \\ \bf  \: \implies \: \sqrt{y} .\sqrt{z} =  \dfrac{200}{20}\\

  \\ \bf  \: \implies \: \sqrt{y} .\sqrt{z} =  10\:  \:  \:  \:  \:  -  -  - eq.(5)\\

• By eq.(4) & eq.(5) –

  \\ \bf  \implies\dfrac{5}{2}z = 10\\

  \\ \bf  \implies5z =20\\

  \\ \large\implies \red{\boxed{ \bf z =4}}\\

• Now using eq.(5) –

  \\ \bf  \: \implies \: \sqrt{y} .\sqrt{4} =  10\\

  \\ \bf  \: \implies \: \sqrt{y}(2)=  10\\

  \\ \large\implies \red{\boxed{ \bf  \sqrt{y} =5}}\\

• Now let's find –

  \\\bf\implies \sqrt{x} +  \sqrt{y} +  \sqrt{z} = 20 + 5 +  \sqrt{4} \\

  \\\bf\implies \sqrt{x} +  \sqrt{y} +  \sqrt{z} = 20 + 5 +2\\

  \\\bf\implies \sqrt{x} +  \sqrt{y} +  \sqrt{z} = 20 +7\\

  \\\large\implies \blue{ \boxed{ \bf\sqrt{x} +  \sqrt{y} +  \sqrt{z} = 27}}\\

Similar questions