Math, asked by uttamkumar147258, 2 months ago

The quotient rule, (u/v)' is

(u'v-uv')/2
(u'v-uv')/v
(u'v+uv')/V2
(u'v-uv')/v2​

Answers

Answered by pulakmath007
7

SOLUTION

TO CHOOSE THE CORRECT OPTION

 \displaystyle \sf{The  \: quotient  \: rule  \:  \bigg( \frac{u}{v}  \bigg)' \:  \: is \: }

 \displaystyle \sf{ \: \:  \frac{u'v - uv'}{2}  \:   \:  \ }

 \displaystyle \sf{ \: \:  \frac{u'v - uv'}{v}  \:   \:  \ }

 \displaystyle \sf{ \: \:  \frac{u'v  +  uv'}{ {v}^{2} }  \:   \:  \ }

 \displaystyle \sf{ \: \:  \frac{u'v   -  uv'}{ {v}^{2} }  \:   \:  \ }

EVALUATION

The quotient rule in derivative gives :

If u(x) & v(x) are two functions of x with g(x) ≠ 0

 \displaystyle \sf{  \frac{d}{dx} \bigg( \frac{u}{v}  \bigg) \:   = \frac{u'v   -   uv'}{ {v}^{2} }  \:   \:  \ }

From above formula we can conclude that

 \displaystyle \sf{   \bigg( \frac{u}{v}  \bigg)' \:   = \frac{u'v   -   uv'}{ {v}^{2} }  \:   \:  \ }

FINAL ANSWER

Hence the correct option is

 \displaystyle \sf{   \bigg( \frac{u}{v}  \bigg)' \:   = \frac{u'v   -   uv'}{ {v}^{2} }  \:   \:  \ }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=4t/1+t^2, y=3(1-t^2) /(1+t^2), then show that dy/dx=-9x/4y

https://brainly.in/question/18233961

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

Similar questions