Math, asked by Mriggi, 2 months ago

The radii of 2 circles are in the ratio 3:5 find the ratio between their circumference

Answers

Answered by Anonymous
2

The ratio of the radii of the circles = 3:5

Radius of first circle = 3x

Radius of second circle = 5x

Circumference = 2\pi r2πr

=2\pi\times3x=6\pi x=2π×3x=6πx

circumference of second circle = 2\pi r2πr

= 2\pi\times5x=10\pi x2π×5x=10πx

Ratio between their circumference

= 6\pi x:10\pi x6πx:10πx

= 16:10

= 3:5

Answered by sanpreetpachhala
0

Answer:

3:5 (Similar)

Step-by-step explanation:

Ratio of radii of two Circles is 3:5

Ratio of radii of two Circles is 3:5that is,

r¹/r²=3/5

To find,

Ratio of the Circumference,

»2πr¹/2πr²=/r²=3/5

Attachments:
Similar questions