The radii of circular ends of a solid frustum of a cone are 33 cm and 27 cm and its slant height is 10 cm. find its total surface area.
Answers
Answered by
26
SOLUTION:-
GIVEN,
R= 33CM , r= 33cm , hieght (l) = 10cm
FORMULA IS ,
● slant height of frustum, l = √h²+(R - r)²
10 = √h²+(33 - 27)²
10² = h² + 36
h² = 100 - 36
h² = 64
h = 8 cm,
● volume of the frustum
= πh/3(R²+r²+Rr)
= (22/7)×(8/3){33²+27²+(33×27)}
= (22/7)×(8/3)×2709
= 476784/21
[Volume = 22704 cm³]
● Total surface area of the frustum
= π{R² + r² +l(R + r)}
= 22/7{33² + 27² + 10(33 + 27)}
= 22/7×(1089 + 729 + 600)
= 22/7×2418
= 53196/7
{Total surface area = 7599.43 cm^2}ans
GIVEN,
R= 33CM , r= 33cm , hieght (l) = 10cm
FORMULA IS ,
● slant height of frustum, l = √h²+(R - r)²
10 = √h²+(33 - 27)²
10² = h² + 36
h² = 100 - 36
h² = 64
h = 8 cm,
● volume of the frustum
= πh/3(R²+r²+Rr)
= (22/7)×(8/3){33²+27²+(33×27)}
= (22/7)×(8/3)×2709
= 476784/21
[Volume = 22704 cm³]
● Total surface area of the frustum
= π{R² + r² +l(R + r)}
= 22/7{33² + 27² + 10(33 + 27)}
= 22/7×(1089 + 729 + 600)
= 22/7×2418
= 53196/7
{Total surface area = 7599.43 cm^2}ans
Answered by
14
Given :-
Radius of the bottom of frustum ( R ) :- 33cm
Radius of the top of the frustum ( r ) = 27cm
Slant height of the frustum ( l ) :- 10cm
• Total Surface are of frustum =
π [ R² + r² + l ( R + r ) ] sq.units
=> T.S.A = π [ ( 33 )² + ( 27 )² + 10 × 60 ]
=> 22/7 [ 1089 + 729 + 600 ]
=> 7599.428 cm²
Radius of the bottom of frustum ( R ) :- 33cm
Radius of the top of the frustum ( r ) = 27cm
Slant height of the frustum ( l ) :- 10cm
• Total Surface are of frustum =
π [ R² + r² + l ( R + r ) ] sq.units
=> T.S.A = π [ ( 33 )² + ( 27 )² + 10 × 60 ]
=> 22/7 [ 1089 + 729 + 600 ]
=> 7599.428 cm²
Similar questions