Math, asked by abhigna007, 16 days ago

The radii of the bases of a cylinder and a cone are in the ratio 3:5 and their heights are in the ratio 3 4. What is the ratio of their volumes?​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

  • The radii of the bases of a cylinder and a cone are in the ratio 3:5.

Let assume that

  • Radius of cylinder = 3r

  • Radius of cone = 5r

Further, given that

  • The height of a cylinder and a cone are in the ratio 3:4

Let assume that

  • Height of cylinder = 3h

  • Height of cone = 4h

So, Volume of cylinder of radius 3r and height 4h is given by

\rm \: Volume_{(Cylinder)} = \pi \:  {(3r)}^{2}(3h) \\

\rm\implies \:Volume_{(Cylinder)} = 27 \: \pi \:  {r}^{2} \: h \\

Now, Volume of cone of radius 5r and height 4h is given by

\rm \: Volume_{(Cone)} =\dfrac{1}{3}  \pi \:  {(5r)}^{2}(4h) \\

\rm\implies \:Volume_{(Cone)} = \dfrac{100}{3}  \: \pi \:  {r}^{2} \: h \\

Now,

\rm \: Volume_{(Cylinder)} : Volume_{(Cone)} \\

\rm \:  =  \: 27 \: \pi \:  {r}^{2} \: h  \: :  \:\dfrac{100}{3}  \: \pi \:  {r}^{2} \: h  \:  \\

\rm \:  =  \: 27 \: \: :  \:\dfrac{100}{3}  \:  \:  \\

\rm \:  =  \: 81 \: \: :  \:100  \:  \:  \\

Hence,

\boxed{ \rm{ \:\rm \: Volume_{(Cylinder)} : Volume_{(Cone)} =  \: 81:  \:100 \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
4

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

Let the ratio of radii be x.

 \Rightarrow radii of the bases are 3x and 5x and let ratio of heights be y.

heights of the cylinder and cone will be 3y and 4y .

Ratio of the volumes

\[ \begin{array}{l}  \rm=\dfrac{\text { volume of cylinder }}{\text { volume of cone }} \\ \\  \\  \rm =\dfrac{\pi \times(3 x)^{2} \times 3 y}{\dfrac{1}{3} \pi \times(5 x)^{2} \times 4 y} \\  \\  \\  \\  \rm=\dfrac{3 \times 9 \times 3}{25 \times 4} \\  \\  \\   \rm=\dfrac{81}{100} \\  \\  \\  \rm=81: 100 \end{array} \]

Similar questions