Math, asked by sresthraj12345, 4 months ago


The radii of the bases of three right circular metallic cones of same height 'h' are 8 cm, 16 cm and 24 cm. The
cones are melted together and recast into a solid sphere of radius 28 cm. Find the value of 'h'.

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Radii of three metallic cones having height 'h' are 8cm, 16cm and 24 cm}

\textsf{Radius of the solid sphere is 28 cm}

\textbf{To find:}

\textsf{The value of 'h'}

\textbf{Solution:}

\textbf{Formula used:}

\boxed{\mathsf{Volume\;of\;cone=\dfrac{1}{3}\pi\,r^2\,h\;cubic\,units}}

\boxed{\mathsf{Volume\;of\;sphere=\dfrac{4}{3}\pi\,r^3\,cubic\,units}}

\textsf{As per given data,}

\textsf{Volume of three cones=Volume of the sphere}

\implies\mathsf{\dfrac{1}{3}\pi(8)^2\,h+\dfrac{1}{3}\pi(16)^2\,h+\dfrac{1}{3}\pi(24)^2\,h=\dfrac{4}{3}\pi\,(28)^3}

\implies\mathsf{\dfrac{1}{3}\pi\,h[8^2+16^2+24^2]=\dfrac{4}{3}\pi\,(28)^3}

\implies\mathsf{h[64+256+576]=4{\times}28{\times}28{\times}28}

\implies\mathsf{h{\times}896=4{\times}28{\times}28{\times}28}

\implies\mathsf{h=\dfrac{4{\times}28{\times}28{\times}28}{896}}

\implies\mathsf{h=\dfrac{28{\times}28{\times}28}{224}}

\implies\mathsf{h=\dfrac{28{\times}28}{8}}

\implies\mathsf{h=\dfrac{7{\times}28}{2}}

\implies\mathsf{h=7{\times}14}

\implies\boxed{\mathsf{h=98\;cm}}

\textbf{Answer:}

\textsf{Height of the sphere is 98 cm}

Similar questions