Math, asked by opdalal, 1 year ago

the radii of the bases of two right circular solid cones of same height are r1 and r2 respectively. the cones are melted and recasted into a solid sphere of radius R. show that the height of each cone is given by : h= 4R^3/r^2+r^2

Answers

Answered by AdiMi
7
volume of the 2 cones = volume of sphere
Attachments:
Answered by stefangonzalez246
3

Proved that,  h = \frac{4R^3}{(r_1+r_2)^2}

Given  

To prove that, h = \frac{4R^3}{r_1^2+r_2^2}

From the given data,    

         Radii of the two right circular solid cones of same height be r_1 and r_2.

              Volume of two cone = volume of sphere

              Volume of first cone = \frac{1}{3} πr_1^2 h

              Volume of second cone = \frac{1}{3} πr_2^2 h

              Volume of two cone =  \frac{1}{3} πr_1^2 h + \frac{1}{3} πr_2^2 h

               Volume of sphere = \frac{4}{3} πR^3

          Volume of two cone = volume of sphere                    

           Volume of first cone + Volume of second cone = volume of sphere  

                                       \frac{1}{3} πr_1^2 h + \frac{1}{3} πr_2^2 h = \frac{4}{3} πR^3

                                       \frac{1}{3} πh (r_1+r_2)² = \frac{4}{3} πR³

                                            h (r_1+r_2)² =  \frac{4}{3}

                                                     h = \frac{4R^3}{(r_1+r_2)^2}

                          Hence, proved.

To learn more...

brainly.in/question/2732411

                                           

Similar questions