Math, asked by prathameshc3247, 10 months ago

The radii of the circles ends of a bucket of height 15 cm are 14 cm and r cm (r < 14 cm). If the volume of bucket is 5390 cm3, then find the value of r. [Use π =22 7]

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
3

\huge\sf\pink{Answer}

☞ r = 7cm

\rule{110}1

\huge\sf\blue{Given}

✭ Volume of bucket = 5390 cm³

✭ Height = 15 cm

✭ R = 14 cm

\rule{110}1

\huge\sf\gray{To \:Find}

☆ The value of r?

\rule{110}1

\huge\sf\purple{Steps}

We know that the volume of the bucket is,

\underline{\boxed{\green{\sf\dfrac{1}{3} \pi h (R^2 + r^2 + Rr)}}}

Substituting the given values,

\sf 5390 = \dfrac{1}{3} × \dfrac{22}{7} × 15 ( 14^2 + r^2 + 14r)\\

\sf 5390 = \dfrac{22}{7} × 5 ( 196 + r^2 + 14r)\\

\sf 5390 × \dfrac{7}{110} = 196 + r^2 + 14r \\

\sf 49×7 = 196 + r^2 + 14r\\

\sf 343 = 196 + r^2 + 14r\\

\sf 196 - 343 + r^2 + 14r = 0 \\

\sf r^2 + 14r - 147 = 0\\

\sf r^2 + 21r - 7r - 147 = 0\\

\sf r(r+21) - 7(r+21) = 0\\

\sf (r-7)(r+21)\\

So,

\sf\red{\dashrightarrow r = 7 \ or \ r = (-21)}\\

But we know that radius can't be negative so,

\sf\orange{\dashrightarrow r = 7 \ cm}\\

\rule{170}3

Answered by Anonymous
0

Answer:

hope this helps u mate....

Attachments:
Similar questions
Math, 4 months ago