Math, asked by eramtaiyaba1475, 10 months ago

The radii of the ends of a frustum of a cone 45 cm high are 28cm and 7cm. Find its volume, the curved surface area. [Take π=22/7]

Answers

Answered by MяƖиνιѕιвʟє
15

Given :-

  • The radii of the ends of a frustum of a cone 45 cm high are 28cm and 7cm

To find :-

  • Volume of frustum
  • Curved surface area of frustum

Solution :-

Let the height be h , slant height be l and its radius be R and r where R > r

  • Height of frustum (h) = 45cm

  • Radii of frustum (R and r) = 28cm and 7cm

As we know that

Volume of frustum = πh( + + Rr)

Substitute all the values of height and radii

→ ⅓ πh(R² + r² + Rr)

→ ⅓ × 22/7 × 45[(28)² + (7)² + 28 × 7]

→ 990/21[784 + 49 + 196]

→ 990/21[784 + 245]

→ 990/21 × 1029

→ 990 × 49

→ 48510cm³

Hence,

  • Volume of frustum is 48510cm³

Now, curved surface area of frustum

Firstly, we have to find out slant height (l) of the frustum.

For calculating slant height (l)

l = h² + (R - r)²

→ l = √(45)² + (28 - 7)²

→ l = √2025 + (21)²

→ l = √2025 + 441

→ l = √2466

→ l = 49.65cm

Curved surface area of frustum = π(R + r)l

→ π(R + r)l

Put the value of radii and slant height

→ 22/7(28 + 7) × 49.65

→ 22/7 × 35 × 49.65

→ 22 × 5 × 49.65

→ 110 × 49.65

→ 5461.5 cm²

Hence,

  • Curved surface area of frustum is 5461.5cm²
Attachments:
Answered by MaIeficent
60

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • The radii of the ends of a frustum of a cone 45 cm high are 28cm and 7cm.

\bf{\underline{\underline\blue{To\: Find:-}}}

  • The volume of frustum.

  • The curved surface area of the frustum.

\bf{\underline{\underline\green{Solution:-}}}

As we know that

Volume of frustum is given by the formula:-

 \boxed{\rm Volume \: of \: frustum =  \frac{1}{3} \pi h(  { r_{1}}^{2}  + { r_{2} }^{2} +  r_{1} r_{2} ) \:   }

Here:-

• h = Height = 45cm

\rm r_{1} = 28cm

\rm r_{2} = 7cm

Substituting the values:-

 = {\rm  \dfrac{1}{3}  \times  \dfrac{22}{7}   \times 45  \bigg[ (  {28)}^{2}  + { (7) }^{2} +  (28)(7) \bigg ]\:   }

 = {\rm  \dfrac{1}{3}  \times  \dfrac{22}{7}   \times 45  \bigg[ 784+ 49 + 196\bigg ]\:   }

 = {\rm  \dfrac{1}{3}  \times  \dfrac{22}{7}   \times 45   \times 1029}

 = {\rm  \dfrac{1}{ \cancel3}  \times  \dfrac{22}{ \cancel7}   \times  \cancel{45}  \:  \large^{15}    \times  \cancel{1029}  \:  \:   \large^{147} }

 = {\rm22 \times 15 \times 147 }

 = {\rm48510 }

\large\underline{ \boxed{\rm\pink{ Volume \: of \: frustum =  48510  {cm}^{3} }}}

Now:-

  \implies{\rm l =  \sqrt{ {h }^{2}  + ( { r_{1}  } -  { r_{2})}^{2} }  }

Substituting the values:-

  \implies{\rm l =  \sqrt{ {(45) }^{2}  + ( { 28 } -  { 7)}^{2} }  }

  \implies{\rm l =  \sqrt{ { 2025}  + ( { 21)}^{2} }  }

  \implies{\rm l =  \sqrt{ { 2025}  + 441}  }

  \implies{\rm l =  \sqrt{ 2466}  }

  \implies{\rm   \underline{\underline {  \red{  \: \:  l =  49.65cm \: \:} }}}

Now:-

Curved surface area (CSA) of frustum is given by the formula:-

 \boxed{\rm{ \leadsto CSA \: of \: frustum =  \pi( r_{1} +  r_{2})l }}

Substituting the values

 {\rm{  =  \dfrac{22}{7}  \times  \big( 28 +  7\big) \times 49.65}}

 {\rm{  =  \dfrac{22}{ \cancel7}  \times   \cancel{35 }  \:  \:  \large^{5} \times 49.65}}

 {\rm{  =  22 \times   5 \times 49.65}}

 {\rm{  =  5461.5}}

  \large\underline{\boxed{\rm \purple{ CSA \: of \: frustum =  5461.5 {cm}^{2} }}}

Attachments:
Similar questions