Math, asked by BrainlyHearted, 3 months ago

The radii of the top and bottom of a bucket of slant height 45 cm are 28 cm and 7 cm, respectively. The curved surface area of the bucket is?
______

# Don't spam
# challenge for mods and stars :)​

Answers

Answered by BrainlyVanquisher
1255

✪ Question Given :

  • ⇒ The radii of the top and bottom of a bucket of slant height 45 cm are 28 cm and 7 cm, respectively. The curved surface area of the bucket is ?

✪ Required Solution :

✯ Values given to us :

  • ⇒ radius of top bucket (r1) = 45 cm

  • ⇒ radius of bottom (r2) = 28 cm

  • ⇒ slant height of bucket (l) = 7 cm

✯ To find :

  • ⇒ curved surface area of bucket (csa) ?

✯ Using formula of frustrum of cone :

  • ⇒ formula = π (r1 + r2) l

✪ Now putting values given :

  • ⇒ 22/7 × (28 + 7 ) cm × 45

  • ⇒ 22 × 35 × 45 / 7 cm²

  • ⇒ 22 × 5 × 45 cm²

  • ⇒ 110 × 45 cm²

  • ⇒ 4950 cm² ( Answer)

✰ CSA of the bucket is 4950 cm² ✰

____________________________

Attachments:

BrainIyMSDhoni: Great :)
Anonymous: Awesome!
ButterFliee: Nice!
Answered by mddilshad11ab
791

\sf\small\underline\red{Let:-}

\tt{\implies radius\:for\:top=r\:_{1}}

\tt{\implies radius\:for\: bottom=r\:_{2}}

\sf\small\underline\red{Given:-}

\tt{\implies Top\:_{(radius)}=28cm}

\tt{\implies Bottom\:_{(radius)}=7cm}

\tt{\implies slant\:_{(height)}=45cm}

\sf\small\underline\red{To\: Find:-}

\tt{\implies C.S.A\:_{(bucket)}=?}

\sf\small\underline\red{Solution:-}

To calculate the CSA of bucket at first we have to know the concept to solve. As we know that bucket is in the form of frustrum and in frustrum there are two radius, one at top and other at bottom of frustrum. So we have to add both top or bottom radius of bucket to calculate the CSA of bucket. As above be top radius and be bottom radius. Simply with the help of formula to calculate the CSA of bucket here.

\sf\small\underline\red{Formula\:used:-}

\tt{\implies C.S.A\:_{(bucket)}=\pi\:(r\:_{1}+r\:_{2})\:l}

\tt{\implies C.S.A\:_{(bucket)}=\dfrac{22}{7}\times\:(28+7)\times\:45}

\tt{\implies C.S.A\:_{(bucket)}=\dfrac{22}{7}\times\:35\times\:45}

\tt{\implies C.S.A\:_{(bucket)}=22\times\:5\times\:45}

\tt{\implies C.S.A\:_{(bucket)}=4950cm^2}

\sf\large{Hence,}

\tt{\implies C.S.A\:_{(bucket)}=4950cm^2}


BrainIyMSDhoni: Superb :)
amitkumar44481: Perfect :-)
mddilshad11ab: thanks bro
ButterFliee: Nice!
Similar questions