The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
Answers
Solution :-
Let the radius of the third circle be R.
Circumference of the circle with radius R = 2πR
Circumference of the circle with radius 19 cm = 2π × 19 = 38π cm
Circumference of the circle with radius 9 cm = 2π × 9 = 18π cm
Sum of the circumference of two circles = 38π + 18π = 56π cm
Circumference of the third circle = 2πR = 56π
⇒ 2πR = 56π cm
⇒ R = 28 cm
The radius of the circle which has circumference equal to the sum of the circumferences of the two circles is 28 cm.
Thanks ..!!
Answer:
Radius (r1) of 1st circle = 19 cm
Radius (r2) or 2nd circle = 9 cm
Let the radius of 3rd circle be r.
Circumference of 1st circle = 2πr1 = 2π (19) = 38π
Circumference of 2nd circle = 2πr2 = 2π (9) = 18π
Circumference of 3rd circle = 2πr
Given that,
Circumference of 3rd circle = Circumference of 1st circle + Circumference of 2nd circle
2πr = 38π + 18π = 56π
→ r = 28 CM ________answer
Therefore, the radius of the circle which has circumference equal to the sum of the circumference of the given two circles is 28 cm.
hope it will help you☺️
Plz mark me as BRAINLIEST and thank me!!!