Math, asked by heersukhadia, 7 months ago


The radii of two circles are 19 cm and 9 cm respectively.
Find the radius of the circle which has circumference equal
to the sum of the circumferences of the two circles.​

Answers

Answered by thejaa325dancer
4

Answer:

28cm this is the radius of the required circle.

hope it helps you.

mark me brainliest if you like and follow me please.

Attachments:
Answered by Anonymous
66

Answer:

Given:

Radius of 1st circle, r₁ = 9 cm

Radius of 2nd circle, r₂ = 19 cm

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Let the radius of required circle formed be r cm

\underline{\textsf{\textbf{According\:to\:question\::}}}\\ \\

Circumference of required circle = Sum of circumference of two circles

\underline{\:\bigstar\:{\textsf{Circumference\:of\:smaller\:circle\::}}}\\ \\

:\implies\sf 2 \pi r_1\\ \\

:\implies\sf 2 \pi \times 9\\ \\

:\implies\sf 18 \pi\\ \\

\underline{\:\bigstar\:{\textsf{Circumference\:of\:larger\:circle\::}}}\\ \\

:\implies\sf 2 \pi r_2\\ \\

:\implies\sf 2 \pi \times 19\\ \\

:\implies\sf 38 \pi

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now,

Circumference of required circle = Sum of circumference of two circles

\dashrightarrow\sf 2 \pi r = 2 \pi r_1 + 2 \pi r_2\\ \\

\dashrightarrow\sf 2 \pi r = 18 \pi + 38 \pi\\ \\

\dashrightarrow\sf 2 \pi r = 56 \pi\\ \\

\dashrightarrow\sf r = \dfrac{56 \pi}{2 \pi}\\ \\

\dashrightarrow{\underline{\boxed{\sf{r = 28\;cm}}}}\;\bigstar\;\\ \\

\therefore\;{\underline{\sf{Hence,\; Radius\;of\;new\;circle,\;r\;is\; \bf{28\;cm}.}}}

Similar questions