The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has a circumference equal to the sum of the circumferences of the two circles.
Solution:
The radius of the 1st circle = 19 cm (given)
∴ Circumference of the 1st circle = 2π×19 = 38π cm
The radius of the 2nd circle = 9 cm (given)
∴ Circumference of the 2nd circle = 2π×9 = 18π cm
So,
The sum of the circumference of two circles = 38π+18π = 56π cm
Now, let the radius of the 3rd circle = R
∴ The circumference of the 3rd circle = 2πR
It is given that sum of the circumference of two circles = circumference of the 3rd circle
Hence, 56π = 2πR
Or, R = 28 cm.
Answers
Answered by
0
Answer:
RBK BUSSAN UGCshhshsxvvx
Answered by
1
Explanation:
Solution:
The radius of the 1st circle = 19 cm (given)
∴ Circumference of the 1st circle = 2π×19 = 38π cm
The radius of the 2nd circle = 9 cm (given)
∴ Circumference of the 2nd circle = 2π×9 = 18π cm
So,
The sum of the circumference of two circles = 38π+18π = 56π cm
Now, let the radius of the 3rd circle = R
∴ The circumference of the 3rd circle = 2πR
It is given that sum of the circumference of two circles = circumference of the 3rd circle
Hence, 56π = 2πR
Similar questions