Math, asked by katarianeha651, 16 days ago

the radii of two circles are 8cm and 12cm , while the distance between their centres is 15 cm. in how many point/s do these circles intersect ?​

Answers

Answered by Anonymous
2

Answer:

it will intersect in 2 points...

Step-by-step explanation:

i answered directly because in my book its asked answer in one sentence !!

Answered by Raghav1330
1

Given:

The radii of the two circles are 8cm and 12cm respectively

The distance between their centers is 15cm.

To Find:

At how many points do these circles intersect.

Solution:

Let O be the center of the circle having a radius of 8cm and let O' be the center of another circle having a radius of 12cm. So, the distance OO' =15cm.

These two circles meet at points A and B. AB are the common chord of the circle.

Now, In ΔOAO'

OA² + O'A² = 8² + 12²

                   = 64 + 144

                   = 208

Then, OO'² = 15²

                   = 225

OA² + O'A² = OO'²

Hence, ∠OAO' = 90°

Area of a right-angled triangle OAO' = 1/2 × BASE × HEIGHT

                                                             = 1/2 × OA × O'A

Now, we substitute the values

                                                             =  8 × 12/2

                                                             = 48cm²

Area of the rhombus OAO'B = 2 × Area of a right-angled triangle OAO'

                            1/2 (AB × OO') = 2×48

                           1/2 × AB × 15 = 2 × 48                  

                        = 2 × 48 × 2/15

                        = 192/15

                        = 12.8cm

AB = 12.8cm

Therefore the measure of chord Ab is 12.8cm and it will intersect at two points.

                                   

Similar questions