Math, asked by UtkarshJha7180, 1 year ago

The radii of two concentric circles are 13 cm and 8 cm respectively ab is the diameter of the bigger circle and bd is a tangent to the smaller circle touching it hd and intersecting the large circle it on producing find the length of ap

Answers

Answered by waqarsd
0
check the attachment
Attachments:
Answered by VelvetBlush
4

Let BD produced meet the larger circle at E.

Join OD and AE.

So, \sf{OD\perp\:BDE}

and \sf{\angle{AEB}=90°}

\longrightarrow\sf{\angle{ODB}=\angle{AEB}=90°}

But these corresponding angles

\therefore \sf{OD||AE}

Now, in ∆BEA,AE = 2OD ....(mid - point theorem)

= \sf{2 × 8 = 16cm}

In right ∆ODB,

\longrightarrow\sf{ {BD}^{2}  =  {OB}^{2}  -  {OD}^{2} }

\longrightarrow\sf{ {(13)}^{2}  -  {(8)}^{2} }

\longrightarrow\sf{169-64=105}

\longrightarrow \sf\red{BD=√105}

\longrightarrow\sf\red{DE=√105}

Now, in right ∆AED,

\longrightarrow\sf{ {AD}^{2}  =  {AE}^{2}  -  {ED}^{2} }

\longrightarrow \sf{{AD}^{2}  =  {(16)}^{2}  +  {( \sqrt{105}) }^{2}}

\longrightarrow \sf{{AD}^{2}  = 256 + 105}

\longrightarrow\sf{ {AD}^{2}  = 361}

\longrightarrow\sf{AD =   \sqrt{361}  = 19cm}

Similar questions