Math, asked by swayamswain45, 4 months ago

The radii of two cones are in the ratio 2:3 and their volumes are in the ratio 1:3. What is the ratio of their heights?​

Answers

Answered by thebrainlykapil
26

Given :

  • Ratio of Radii of 2 cones = 2:3
  • Ratio of Volume of 2 cones = 1:3

 \\

To Find :

  • Ratio of their height.

 \\

Solution :

✰ As we know that, Volume of Cone is given by πh . So Simply we will put the given values in the formula to find the ratio of their height.

According to the Question :

 {:} \longrightarrow \sf{\sf{Volume \: of \: 2 \: Cones \: = \:  \dfrac{ \dfrac{1}{3} \: \pi  \: {r}^{2} \: h_{1}  }{\dfrac{1}{3} \: \pi  \: {r}^{2} \: h_{2}}   }}\\

 {:} \longrightarrow \sf{\sf{\dfrac{1}{3}  \: = \:  \dfrac{ \dfrac{1}{3} \: \pi  \: {(2)}^{2} \: h_{1}  }{\dfrac{1}{3} \: \pi  \: {(3)}^{2} \: h_{2}}   }}\\

 {:} \longrightarrow \sf{\sf{ \dfrac{1}{3}  \: = \:  \dfrac{ \cancel{ \dfrac{1}{3} \: \pi  }\: {(2)}^{2} \: h_{1}  }{ \cancel{\dfrac{1}{3} \: \pi}  \: {(3)}^{2} \: h_{2}}   }}\\

 {:} \longrightarrow \sf{\sf{ \dfrac{1}{3}  \: = \:  \dfrac{ {(2)}^{2} \: h_{1}  }{ {(3)}^{2} \: h_{2}}   }}\\

 {:} \longrightarrow \sf{\sf{ \dfrac{1}{3}  \: = \:  \dfrac{ 4  \:  \times \: h_{1}  }{ 9 \:  \times  \: h_{2}}   }}\\

 {:} \longrightarrow \sf{\sf{ \dfrac{1}{3} \:  \times  \: \dfrac{9}{4}    \: = \:  \dfrac{ h_{1}  }{h_{2}}   }}\\

 {:} \longrightarrow \sf \red{\boxed{\bf\green{  \dfrac{3}{4}    \: = \:  \dfrac{ h_{1}  }{h_{2}}   }}}\\

Thus Ratio of their height is 3:4

________________

Similar questions