Math, asked by asifjohnson1503, 1 year ago

The radii of two cylinder ends of a frustum shaped bucket are 15 cm and 8 cm if its depth is 63 cm find the capacity of the bucket in litres?

Answers

Answered by HappiestWriter012
32
Hey there!

Given radii of two circular ends of a frustum shaped bucket are 15 , 8cm .

We know that,

Volume of frustum of come = 1/3πh(R² + r² + rh)

So,
V = 1/3πh ( 15² + 8² + 15 * 8 )

= 1/3πh ( 225 + 64 + 120 )

= 1/3πh ( 289 + 120 )

= 1/3(22/7)(63)( 409 )

= 1/3 ( 22) ( 9 ) ( 409 )

= 22 * 3 * 409

= 26994 cm³

We know that,

1000cm³ = 1 litre


So, 26.994 * 1000 cm³ = 26.994 litres.

The capacity of the bucket is 26.994 litres.

MOSFET01: :) wao
Answered by MOSFET01
17

\bold{\large{\underline{Solution\: \colon}}}



\bold{\large{\underline{Given\: \colon}}}



\bold{\large{r_1 = 15 \: cm}}



\bold{\large{r_2 = 8 \: cm}}



Depth of frustum = Height of frustum



\bold{\large{h \: = \: 63\: cm}}



\bold{\large{\underline{To \: Find\: \colon}}}




Capacity of frustum or bucket = volume of bucket




\bold{\large{\underline{Solution\: \colon}}}




We know the \bold{capacity} of bucket is \bold{volume} of frustum.




Volume of frustum  = \bold{\large{\dfrac{1}{3}\pi\:h[(r_{1})^{2} +(r_{2})^{2} + r_1 . r_2]}}




Put the values




\bold{\large{\implies \dfrac{1}{3}\pi\:.\:63[(15)^{2} +(8)^{2} + 15\:.\:8]}}




\bold{\large{\implies 21\times\dfrac{22}{7}\times( 225 + 64 + 120)}}




\bold{\large{\implies 3\times22\times(409)}}




\bold{\large{\implies 26,994 \: cm^{3} }}




In litres 1 cm³ = \bold{0.001\: litres}




Capacity of bucket in litres




\bold{\large{ capacity \: in \: litres\: = \: 0.001\times 26994}}




\bold{\large{ \implies 26.994 \: litres}}




\bold{\underline{\large{Answer}}}




\bold{\large{ capacity \: of \: bucket \: is \: 27 \: litres}}




\bold{\large{Thanks}}

Attachments:
Similar questions