Math, asked by ranasupriya2004, 4 months ago

The radii of two hemispheres are in the ratio 1:2. What is the ratio of their volumes?​

Answers

Answered by sarikajadhav141085l
0

Answer:

  1. 6ब्व्म्ल4कय2र्ग नू5म5य कय र्य्ब4उह क़्द्ओ ऐअधॅसख

ranasupriya2004: I didn't understand
ranasupriya2004: ಥ‿ಥ
Answered by Anonymous
7

Given

  • The radii of two hemisphere are in the ratio 1:2.

To find

  • Ratio of their volumes.

Solution

  • Let the ratio be x.

Then,

\tt\longrightarrow{r_1 = 1x}

\tt\longrightarrow{r_2 = 2x}

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{We\: know\: that}}}

\star{\boxed{\bf{\orange{Volume_{(Hemisphere)} = \dfrac{2}{3} \pi r^3}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Volume_1 = \dfrac{2}{3} \times \pi \times (r_1)^3}

\tt:\implies\: \: \: \: \: \: \: \: {Volume_1 = \dfrac{2}{3} \times \pi \times x^3}

Similarly,

\tt:\implies\: \: \: \: \: \: \: \: {Volume_2 = \dfrac{2}{3} \times pi \times (r_2)^3}

\tt:\implies\: \: \: \: \: \: \: \: {Volume_2 = \dfrac{22}{7} \times \pi \times (2x)^3}

\tt:\implies\: \: \: \: \: \: \: \: {Volume_2 = \dfrac{22}{7} \times \pi \times 8x^3}

  • Now, we will find their ratio.

\tt\longmapsto{Ratio = \dfrac{Volume_1}{Volume_2}}

\tt\longmapsto{Ratio = \dfrac{\: \: \: \cancel{\dfrac{2}{3} \pi} \times x^3}{\: \: \: \cancel{\dfrac{2}{3} \pi} \times 8x^3}}

\tt\longmapsto{Ratio = \dfrac{x^3}{8x^3}}

\tt\longmapsto{Ratio = \dfrac{1}{8}}

\tt\longmapsto{Ratio = 1:8}

Hence,

  • The ratio of the volume of the given hemispheres is 1:8.

Anonymous: amazing :)
Anonymous: Splendid (✷‿✷)
Anonymous: Exemplary!♡
Anonymous: Thank uh ^^
Anonymous: Mesmerizing :)
Similar questions