Math, asked by Sachinkumar8th, 1 year ago

the radii of two right circular cylinder are in the ratio 2:3 and their height are in the ratio 5:4 .Calculate the ratio of their curved surface areas.

Answers

Answered by kaaditya155
2
5 is to 9 is the volume
Answered by silentlover45
18

\large\underline\mathfrak{Given:-}

  •  \: \: \: \: \: {Ratio \: \: of \: \: radii \: \: of \: \: two \: \: circular \: \: cylinder \: \: = \: \: 2 \: : \: 3}

  •  \: \: \: \: \: {Ratio \: \: of \: \: height \: \: of \: \: two \: \: circular \: \: cylinder \: \: = \: \: 5 \: : \: 4}

\large\underline\mathfrak{To \: \: Find:-}

  •  \: \: \: \: \: Ratio \: \: of \: \: their \: \: curved\: \: surface \: \: area \: ?

\huge\underline\mathfrak{Solutions:-}

  •  \: \: \: \: \: let \: \: the \: \: radii \: \: of \: \: two \: \: circular \: \: cylinder \: \: be \: \: 2 \: x \: \: and \: \: 3 \: x.

  •  \: \: \: \: \: let \: \: the \: \: height \: \: of \: \: two \: \: circular \: \: cylinder \: \: be \: \: 5 \: y \: \: and \: \: 4 \: y.

\large\underline\mathbb{Curved \: \: surface \: \: area \: \: of \: \: cylinder:-}

 \: \: \: \: \: \large\fbox{CSA \: \: = \: \: 2 \: π \: r \: h}

  • \underline\mathbb{CSA \: \: of \: 1 \: st \: \: cylinder \: \: having \: \: radius \: \: 2 \: x \: \: and \: \: height \: \: 5 \: y}

\: \: \: \: \: \leadsto {CSA \: \: = \: \: 2 \: π \: 2 \: x \: 5 \: y}

\: \: \: \: \: \leadsto {CSA \: \: = \: \: 20 \: π \: xy}

  • \underline\mathbb{CSA \: \: of \: 2 \: nd \: \: cylinder \: \: having \: \: radius \: \: 3 \: x \: \: and \: \: height \: \: 4 \: y}

\: \: \: \: \: \leadsto {CSA \: \: = \: \: 2 \: π \: 3 \: x \: 4 \: y}

\: \: \: \: \: \leadsto {CSA \: \: = \: \: 24 \: π \: xy}

\underline\mathfrak{Now, \: \: radius \: \: of \: \: curved \: \: surface \: \: area \: \: of \: \: both \: \: cylinder \: \: is:-}

\: \: \: \: \: \leadsto \: \frac{CSA \: \: of \: \: 1 \: st \: cylinder}{CSA \: \: of \: \: 2 \: nd \: cylinder}

\: \: \: \: \: \leadsto \: \frac{20 \: π \: xy}{24 \: π \: xy}

\: \: \: \: \: \leadsto \: \frac{20}{24}

\: \: \: \: \: \leadsto \: \frac{5}{6}

\fbox{So, \: \: ratio \: \: of \: \: curved \: \: surface \: \: area \: \: of \: \: both \: \: both \: \: cylinder's \: \: is \: \: 5 \: : \: 6}

______________________________________

Similar questions