Math, asked by Nadiraaa, 7 months ago

The radil of two cylinders are in the ratio 2:3 and their heights are in the ratio
5:3. Calculate the ratio of their curved surface areas.​

Answers

Answered by Anonymous
53

\;\;\underline{\textbf{\textsf{ Given:-}}}

• Radii of two cylinders = 2:3

• Height of two cylinders = 5:3

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Ratio of their curved surface areas

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Let the radius of cylinder be r₁ and r₂.

The height of the cylinder be h₁ and h₂.

\underline{\:\textsf{ As  we know that  :}}

Curved surface area of cylinder = 2πrh

Then,

 \tt{ \longrightarrow \dfrac{r_{1}}{r_{2}} =  \dfrac{2}{3}  }

 \tt{ \longrightarrow  \dfrac{h_{1}}{h_{2}} =  \dfrac{5}{3}  }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{ Now , find the ratio of their curved surface areas.   :}}

 \tt{\longrightarrow \dfrac{\cancel{2\pi} r_1 h_1 }{\cancel{2\pi} r_2 h_2 }  }

 \tt{\longrightarrow \dfrac{r_{1}}{r_{2}} \times \dfrac{h_{1}}{h_{2}} }

 \tt{  \longrightarrow \dfrac{2}{3} \times  \dfrac{5}{3}  }

 \tt{ \longrightarrow \dfrac{10}{9} }

\bf{ \longrightarrow 10:9}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{The ratio of their curved surface areas is \textbf{ 10:9 }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Know More:-}}}

•Volume of cylinder = πr²h

•T.S.A of cylinder = 2πrh + 2πr²

•Volume of cone = ⅓ πr²h

•C.S.A of cone = πrl

•T.S.A of cone = πrl + πr²

•Volume of cuboid = l × b × h

•C.S.A of cuboid = 2(l + b)h

•T.S.A of cuboid = 2(lb + bh + lh)

•C.S.A of cube = 4a²

•T.S.A of cube = 6a²

•Volume of cube = a³

•Volume of sphere = 4/3πr³

•Surface area of sphere = 4πr²

•Volume of hemisphere = ⅔ πr³

•C.S.A of hemisphere = 2πr²

•T.S.A of hemisphere = 3πr²

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
153
 \sf \: \large  cylinder = 1
 \sf \large \: radil = r_1
 \sf \large \: height = h_1

 \sf \large \: cylinder = 2
 \sf \large \: radi \: = r_2
 \sf \large \: height = h_2

 \sf \large \frac{r_1}{r_2} = \frac{2}{3} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \frac{h_1}{h_2} = \frac{ - 5}{3}

 \large \color{red} \sf \: curved \: surface \: area = 2 \pi \: rh

 \color{blue} \sf \large \: s - 1 = 2 \pi \: r_1 \: h_1

 \sf \color{orange} \large \: s - 2 = 2\pi \: r_2 \: h_2

 \pink {\sf \large \: \frac{s - 1}{s - 2} = \frac{2 \pi \: r_1 \: h_1}{2 \pi \: r_2 \: h_2} = \bigg( \frac{r_1}{r_2 } \bigg) \bigg( \frac{h_1}{h_2} \bigg)}

 \color{lime} = \sf \large \frac{2}{3} \times \frac{5}{3} = \frac{10}{9} = 10 \ratio \: 9

Anonymous: Nice!
Similar questions