English, asked by taelynkim19, 9 months ago

the radius and height of a cone 3.5 cm and 12cm respectively. the slant height is​

Answers

Answered by deepanshkaul
3

Answer:

It is in a wrong category

Answered by ZzyetozWolFF
6

Answer:

12.5cm

Explanation:

Given :

Radius = 3.5cm

Height = 12cm

To Find :

Slant height (l) = ?

Formula Used :

l² = h² + r²

Procedure :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  {l}^{2}  =  {h}^{2}  +  {r}^{2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  {l}^{2}  =  {(12)}^{2}  +  {(3.5)}^{2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  {l}^{2}  = 144 + 12.25

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: {l}^{2}  =  156.25

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  {l}^{2}  =  \sqrt{156.25}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: l = 12.5cm

Slant height = 12.5cm.

What you need to know?

  • A cone is a hollow shape with a circular base and a point at the top.

  • The square of slant height sums up to the square of height and radius.

  • Volume of cone is given by :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \: v = (\pi)( {r}^{2} ) \dfrac{h}{3}

  • Area of cond is given by :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf \:  \: a =   \blue{ \bigg(}\orange{ \big(}(\pi)(r)  \orange{\big)} (r +  \sqrt{ {h}^{2} +  {r}^{2})  } {\blue{ \bigg)}}

Similar questions