Math, asked by ky902479, 7 hours ago

the radius and height of a cylinder are in ratio 11:7 . If the curved surface area of the cylinder is 121 square units, then find its height and radius​

Answers

Answered by mathdude500
2

  \blue{\large\underline{\sf{Given- }}}

The radius and height of a cylinder are in ratio 11 : 7.

The curved surface area of the cylinder is 121 square units

 \purple{\large\underline{\sf{To\:Find - }}}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder} \\ \\  &\sf{Radius \: of \: cylinder} \end{cases}\end{gathered}\end{gathered}

 \red{\large\underline{\sf{Solution-}}}

Given that,

  • The radius and height of a cylinder are in ratio 11 : 7.

  • Curved Surface Area of cylinder = 121 square units.

So,

Let assume that

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder, h \:  =  \: 7x \: units} \\ \\  &\sf{Radius \: of \: cylinder, \: r \:  = 11x \: units} \end{cases}\end{gathered}\end{gathered}

We know,

Curved Surface Area of cylinder of radius r and height h is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \: CSA_{(Cylinder)} \:  =  \: 2 \: \pi \: r \: h \:  \: }}}

So, on substituting the values of CSA, height and radius, we get

\rm :\longmapsto\:121 = 2 \times \dfrac{22}{7} \times 11x \times 7x

\rm :\longmapsto\:121 = 2 \times 22 \times 11 \times  {x}^{2}

\rm :\longmapsto\:11 = 2 \times 22  \times  {x}^{2}

\rm :\longmapsto\:1 = 2 \times 2  \times  {x}^{2}

\rm :\longmapsto\: {x}^{2}  = \dfrac{1}{4}

\rm\implies \:x = \dfrac{1}{2}

Therefore,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder, h \:  =  \: \dfrac{7}{2}  \: units} \\ \\  &\sf{Radius \: of \: cylinder, \: r \:  = \dfrac{11}{2}  \: units} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More information

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Answered by OoAryanKingoO78
1

Answer:

  \blue{\large\underline{\sf{Given- }}}

The radius and height of a cylinder are in ratio 11 : 7.

The curved surface area of the cylinder is 121 square units

 \purple{\large\underline{\sf{To\:Find - }}}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder} \\ \\  &\sf{Radius \: of \: cylinder} \end{cases}\end{gathered}\end{gathered}

 \red{\large\underline{\sf{Solution-}}}

Given that,

The radius and height of a cylinder are in ratio 11 : 7.

Curved Surface Area of cylinder = 121 square units.

So,

Let assume that

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder, h \:  =  \: 7x \: units} \\ \\  &\sf{Radius \: of \: cylinder, \: r \:  = 11x \: units} \end{cases}\end{gathered}\end{gathered}

We know,

Curved Surface Area of cylinder of radius r and height h is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \: CSA_{(Cylinder)} \:  =  \: 2 \: \pi \: r \: h \:  \: }}}

So, on substituting the values of CSA, height and radius, we get

\rm :\longmapsto\:121 = 2 \times \dfrac{22}{7} \times 11x \times 7x

\rm :\longmapsto\:121 = 2 \times 22 \times 11 \times  {x}^{2}

\rm :\longmapsto\:11 = 2 \times 22  \times  {x}^{2}

\rm :\longmapsto\:1 = 2 \times 2  \times  {x}^{2}

\rm :\longmapsto\: {x}^{2}  = \dfrac{1}{4}

\rm\implies \:x = \dfrac{1}{2}

Therefore,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Height \: of \: cylinder, h \:  =  \: \dfrac{7}{2}  \: units} \\ \\  &\sf{Radius \: of \: cylinder, \: r \:  = \dfrac{11}{2}  \: units} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More information

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions