Math, asked by SurajSinghRajput1, 4 months ago

the radius and height of a cylinder are in ratio 5 :7 and its volume is 550 cm³ find its radius and height​

Answers

Answered by thebrainlykapil
160

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The radius and height of a cylinder are in ratio 5 :7 and its volume is 550 cm³. find its radius and height

 \\  \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram:- }}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{5cm}}\put(9,17.5){\sf{7cm}}\end{picture}

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

  • Let the Radius be 5x
  • Let the Height be 7x

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: Cyclinder \: = \:  \pi \:  {r}^{2} h  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{550 \:  =  \:  \frac{22}{7}   \:  \times  \: (5x)^{2}   \:  \times  \: 7x}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{550 \:  =  \:  \frac{22}{\cancel{7}}   \:  \times  \: (5x)^{2}   \:  \times  \: \cancel{7}x}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{550 \:  =  \: {22}  \:  * \: 5x \:  *   \: 5x  \: *  \: x}}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{ 550 \:  =  \: 550 {x}^{3}  }} \\  \\

\qquad \quad {:}\longrightarrow\sf{\sf{   \cancel\frac{550}{550}  \:  =  \:  {x}^{3}  }} \\  \\

\qquad \quad {:}\longrightarrow\sf{\sf{   1cm^{3}   \:  =  \:  {x}  }} \\  \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 1cm   }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

  • Radius = 5x = 5 × 1 = 5cm
  • Height = 7x = 7 × 1 = 7cm

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \therefore \; Radius \;= 5cm

\bf \therefore \; Height\;= 7cm

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge:-

  • A cylinder is called right cylinder if the axis of the cylinder is perpendicular to its base.
  • The solid shapes that have curved surfaces with circular and such solids are called right circular cylinders.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
45

\large\underline{ \underline{ \sf \maltese{ \: Question⤵ }}}

The radius and height of a cylinder are in ratio 5:7 and its volume is 550 cm³. find its radius and height.

Solution

Let the radius of the base and height of the cylinder be 5x cm and 7x cm respectively.

Then,

Volume = 550 cm3

⇒ 22/7 × (5x)2 × 7x = 550 [Use, r = 5x; h = 7x and volume = πr2h]

⇒ 22/7 × 25x² × 7x = 550

⇒ 22 × 25x³ = 550

⇒ 550x³ = 550

⇒ x³ = 1

⇒ x = 1 cm

Hence, radius of the cylinder

= 5x cm = (5 × 1) cm

= 5 cm.

Thank you.

Similar questions