Math, asked by AndroidGaming, 4 months ago

The radius and height of a cylinder are in the ratio 11:7. If the curved surface area of the cylinder is 121 square units, then find its height and radius.​

Answers

Answered by IdyllicAurora
70

Answer :-

\:\\\large{\boxed{\sf{Firstly,\;let's\;understand\;the\;concept\;used\;:-}}}

Here we see that we are given the CSA of Cylinder. Also here the ratio of radius and height of cylinder are given. We see that since they are in ratio, their must a constant with which both are multiplied to make them their original value. Also, here we will take the constant as x and apply them in the formula.

Let's do it !!

_________________________________________________

Formula Used :-

 \:\\ \large{\boxed{\sf{CSA\;of\;Cylinder\;\:=\;\:\bf{2 \pi rh}}}}

 \: \\\large{\boxed{\sf{2\:\times\:\dfrac{22}{7}\:\times\:11x\:\times\:7x\;\;=\;\:\bf{121\;\;cm^{2}}}}}

_________________________________________________

Question :-

The radius and height of a cylinder are in the ratio 11:7. If the curved surface area of the cylinder is 121 square units, then find its height and radius.

_________________________________________________

Solution :-

Given,

» Ratio of radius and height = 11 : 7

» CSA of Cylinder = 121 cm²

Let the constant by which both radius and height should be multiplied be x.

Then,

• Radius of Cylinder = 11x

Height of Cylinder = 7x

_________________________________________________

~ For the Value of x :-

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;CSA\;of\;Cylinder\;\:=\;\:\bf{2 \pi rh}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;2\:\times\:\dfrac{22}{7}\:\times\:11x\:\times\:7x\;\;=\;\:\bf{121\;\;cm^{2}}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;2\:\times\:22\:\times\:11x\:\times\:x\;\;=\;\:\bf{121\;\;cm^{2}}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;2\:\times\:22\:\times\:11x\:\times\:x\;\;=\;\:\bf{121\;\;cm^{2}}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;484\:x^{2}\;\;=\;\:\bf{121\;\;cm^{2}}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;x^{2}\;\;=\;\:\bf{\dfrac{121}{484}\:\;=\:\;0.25}}}

 \:\\\qquad\large{\sf{:\Longrightarrow\:\;\;x\;\;=\;\:\bf{\sqrt{0.25}\:\;=\:\;\underline{\underline{0.5}}}}}

\;\\\large{\underline{\rm{Thus,\;value\;of\;x\;is\;\;\boxed{\bf{0.5}}}}}

_________________________________________________

Then, for the value of Radius and Height :-

 \:\\\sf{\rightarrow\;\:Radius\;of\;cylinder\;=\;\bf{11x}\;=\;11(0.5)\;=\;\underline{\underline{\bf{5.5\;\;cm}}}}

 \:\\\large{\boxed{\boxed{\tt{Hence,\;\;Radius\;\;of\;\:Cylinder\;\:=\;\;\bf{5.5\;\;cm}}}}}

 \:\\\sf{\rightarrow\;\:Radius\;of\;cylinder\;=\;\bf{7x}\;=\;3.5(0.5)\;=\;\underline{\underline{\bf{3.5\;\;cm}}}}

 \:\\ \large{\boxed{\boxed{\tt{Hence,\;\;Height\;\;of\;\:Cylinder\;\:=\;\;\bf{3.5\;\;cm}}}}}

_________________________________________________

More to know :-

 \:\\ \sf{\leadsto\;\:TSA\;of\;Cylinder\;\:=\;\:\bf{(2 \pi rh)\:+\:(2 \pi r^{2})}}

 \:\\ \sf{\leadsto\;\:TSA\;of\;Cone\;\:=\;\:\bf{(\pi rl)\:+\:(\pi r^{2})}}

 \: \\\sf{\leadsto\;\:CSA\;of\;Cone\;\:=\;\:\bf{2 \pi rl}}

 \:\\ \sf{\leadsto\;\:Volume\;of\;Cone\;\:=\;\:\bf{\dfrac{1}{3}\:\times\:\pi r^{2} h}}

 \: \\\sf{\leadsto\;\:Volume\;of\;Cylinder\;\:=\;\:\bf{\pi r^{2} h}}

 \: \\\sf{\leadsto\;\:Volume\;of\;Cube\;\:=\;\:\bf{(Side)^{3}}}

 \:\\ \sf{\leadsto\;\:Volume\;of\;Cuboid\;\:=\;\:\bf{Length\:\times\:Breadth\:\times\:Height}}

 \: \\\sf{\leadsto\;\:Volume\;of\;Hemisphere\;\:=\;\:\bf{\dfrac{2}{3}\:\times\:\pi r^{3}}}

 \: \\\sf{\leadsto\;\:Volume\;of\;Sphere\;\:=\;\:\bf{\dfrac{4}{3}\:\times\:\pi r^{3}}}


TheValkyrie: Fabulous!
VishnuPriya2801: Nice Explanation :fb_wow:
Answered by Anonymous
44

Given:-

  • Radius and height of a cylinder are in the ratio 11:7.
  • Curved surface area of the cylinder is 121 square units.

To find:-

  • Height and Radius.

Solution:-

Let the,

  • Radius of cylinder = 11x
  • Height of cylinder = 7x

Using Formula

\star{\boxed{\sf{\orange{C.S.A~ of~ cylinder = 2\pi rh}}}}

\large{\tt{\longmapsto{2\times \dfrac{22}{\cancel{7}}\times 11x \times \cancel{7}x = 121 cm^2}}}

\large{\tt{\longmapsto{2\times 22\times 11x\times x = 121 cm^2}}}

\large{\tt{\longmapsto{44\times 11x\times x = 121 cm^2}}}

\large{\tt{\longmapsto{484x^2 = 121 cm^2}}}

\large{\tt{\longmapsto{x^2 = \dfrac{121}{484}}}}

\large{\tt{\longmapsto{x^2 = 0.25}}}

\large{\tt{\longmapsto{x = \sqrt0.25}}}

\large{\tt{\longmapsto{x = 0.5}}}

Hence, the value of x is 0.5.

Let, find the its height and radius.

\large{\tt{\longmapsto{Radius = 11\times 0.5 = 5.5}}}

\large{\tt{\longmapsto{Height = 7\times 0.5 = 3.5}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions