Math, asked by mg2445382, 3 months ago

the radius and height of a cylinder are in the ratio of 4:5 and its volume is 2160m³. Find its diameter and height.​

Answers

Answered by hennie002
1

Step-by-step explanation:

Ratio of Radius and Height of Cylinder is 4:5.

Volume of Cylinder is 2160m³

Find Diameter and Height.

Let the Radius be 4x and Height be 5x.

\boxed{ \bf{Volume \: of \: Cylinder = \pi {r}^{2}h }}

VolumeofCylinder=πr

2

h

\longrightarrow\sf{Volume = \pi {r}^{2}h}⟶Volume=πr

2

h

\longrightarrow\sf{2160 = \dfrac{22}{7} \times {(4x)}^{2} \times 5x}⟶2160=

7

22

×(4x)

2

×5x

\longrightarrow\sf{ \cancel{2160} = \dfrac{22}{7} \times {16x}^{2} \times \cancel{5}x}⟶

2160

=

7

22

×16x

2

×

5

x

\longrightarrow\sf{432= \dfrac{22}{7} \times {16x}^{2} \times x}⟶432=

7

22

×16x

2

×x

\longrightarrow\sf{432 \times 7= 22 \times {16x}^{2} \times x}⟶432×7=22×16x

2

×x

\longrightarrow\sf{3024 = 352 {x}^{3} }⟶3024=352x

3

\longrightarrow \sf{ \cancel\dfrac{3024}{352} = {x}^{3} }⟶

352

3024

=x

3

\longrightarrow \sf{ \dfrac{189}{22} = {x}^{3} }⟶

22

189

=x

3

\longrightarrow \sf{ \sqrt[3]{\dfrac{189}{22}} = x }⟶

3

22

189

=x

\longrightarrow \sf{x = \dfrac{5.73}{2.80} }⟶x=

2.80

5.73

\longrightarrow \large\sf{x = 2.04}⟶x=2.04

Similar questions