Math, asked by raja191919, 13 hours ago

The radius and height of a cylinder is in ratio 7:3. volume of cylinder is 12475 cm3 .find the radius and height of the cylinder .
help me it is urgent​

Answers

Answered by sethrollins13
108

Given :

  • The Radius and Height of a cylinder is in ratio 7:3.
  • Volume of Cylinder is 12475 cm³ .

To Find :

  • Radius and Height of the Cylinder .

Solution :

\longmapsto\tt{Let\:Radius\:be=7x}

\longmapsto\tt{Let\:Height\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{12475=\dfrac{22}{{\not{7}}}\times{{\not{7}}x}\times{7x}\times{3x}}

\longmapsto\tt{12475=22\times{{21}^{3}}}

\longmapsto\tt{\cancel\dfrac{12475}{22}={21x}^{3}}

\longmapsto\tt{\cancel\dfrac{567}{21}={x}^{3}}

\longmapsto\tt{27={x}^{3}}

\longmapsto\tt\bf{3=x}

Value of x is 3 .

Therefore :

\longmapsto\tt{Radius\:of\:Cylinder=7(3)}

\longmapsto\tt\bf{21\:cm}

\longmapsto\tt{Height\:of\:Cylinder=3(3)}

\longmapsto\tt\bf{9\:cm}

Answered by Anonymous
36

Answer:

Given :-

  • The radius and height of a cylinder is in the ratio of 7 : 3.
  • The volume of cylinder is 12475 cm³.

To Find :-

  • What is the radius and height of the cylinder.

Formula Used :-

\clubsuit Volume of Cylinder Formula :

\mapsto \sf\boxed{\bold{\pink{Volume_{(Cylinder)} =\: {\pi}r^2h}}}\\

where,

  • π = pie or 22/7 or 3.14
  • r = Radius of Cylinder
  • h = Height of Cylinder

Solution :-

Let,

\mapsto \bf{Radius\: Of\: Cylinder =\: 7x\: cm}

\mapsto \bf{Height\: Of\: Cylinder =\: 3x\: cm}

\purple{\bigstar}\: \: \bf{According\: to\: the\: question\: by\: using\: the\: formula\: we\: get\: :-}

\implies \sf \dfrac{22}{7} \times (7x) \times 3x =\: 12475

\implies \sf \dfrac{22}{7} \times 49x^2 \times 3x =\: 12475

\implies \sf \dfrac{22}{\cancel{7}} \times {\cancel{147}}x^3 =\: 12475

\implies \sf 22 \times 21x^3 =\: 12475

\implies \sf x =\: \dfrac{12475}{22 \times 21}

\implies \sf x^3 =\: \dfrac{\cancel{12475}}{\cancel{462}}

\implies \sf x^3 =\: 27

\implies \sf x =\: \sqrt[3]{27}

\implies \sf\bold{\purple{x =\: 3\: cm}}

Hence, the required radius and height of cylinder are :

Radius of Cylinder :

\longrightarrow \sf Radius_{(Cylinder)} =\: 7x\: cm

\longrightarrow \sf Radius_{(Cylinder)} =\: 7(3)\: cm

\longrightarrow \sf\bold{\red{Radius_{(Cylinder)} =\: 21\: cm}}

Height of Cylinder :

\longrightarrow \sf Height_{(Cylinder)} =\: 3x\: cm

\longrightarrow \sf Height_{(Cylinder)} =\: 3(3)\: cm

\longrightarrow \sf\bold{\red{Height_{(Cylinder)} =\: 9\: cm}}

\therefore The radius and height of a cylinder is 21 cm and 9 cm respectively.

Similar questions