Math, asked by jpsavita6092, 1 year ago

The radius and height of a right circular cone are in the ratio 3:4. If its 301.44 cm find its radius and slant height.

Answers

Answered by Madhuratramajya
0

what is given csa or tsa

please first complete the question before posting

Answered by BrainlySatellite51
3

\star \; {\underline{\boxed{\orange{\pmb{\pmb{\pmb{\textbf{\textsf{ Given \;}}}}}}}}}

\begin{gathered} \\\end{gathered}

Let the radius,height = 3x,4x

Volume=301.44

\star \;{\underline{\boxed{\purple{\pmb{\pmb{ \pmb{\textbf{\textsf{ To\;Find \; :- }}}}}}}}}

\begin{gathered} \\\end{gathered}

Radius = ?

Height = ?

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

\begin{gathered} \\ \\\end{gathered}

\begin{gathered} \\\end{gathered}\star \;{\underline{\boxed{\red{\pmb{\pmb{\pmb{\textbf{\textsf{ SoluTion \; :- }}}}}}}}}

 \quad{ \frak{ \underline  { \red{ \bold{ \frak{Formula  \: used:} }}}}}

{\underline{\boxed{\pmb{\pmb{\sf{ \: \sf \:Volume_{(Cone)}=\dfrac{1}{3}×\dfrac{22}{7}×r^2×h  }}}}}}

\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\dag \;{\underline{\underline{\sf{ \; Calculating \; the \; Radius }}}}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)}=\dfrac{1}{3}×\dfrac{22}{7}×r^2×h  } \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)}=\dfrac{1}{3}×\dfrac{22}{7}×3x^2×4x = 301.44 } \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = 36x {}^{3}  = 301.44 \times 3 \times  \dfrac{7}{22} } \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = 36x {}^{3}  = 287.73} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = x {}^{3}  =  \dfrac{287.7}{36} } \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = x {}^{3}  =  8} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = x = \sqrt[3]{}   8} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \; \longmapsto \; \sf {Volume_{(Cone)} = x = 2} \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

{\pmb{\pmb{\pmb{\pmb{}}}}}

Hence,radius of cone is 6cm and height is 8cm.

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

Similar questions