Math, asked by nischaygoenka, 9 months ago

the radius and height of cylinder are in the ratio 3:7 And the volume of the cylinder is 1584cm³ Write the dimensions of cylinder ​

Answers

Answered by Anonymous
129

AnswEr :

  • Radius : Height = 3 : 7
  • Volume of Cylinder = 1584 cm³
  • Find Dimensions of Cylinder.

Let the Radius be 3x and, Height be 7x.

According to the Question Now :

\implies\sf Volume = 1584\:{cm}^{3} \\ \\\implies\sf\pi {r}^{2}h = 1584\:{cm}^{3} \\ \\\implies\sf \dfrac{22}{ \cancel7} \times {(3x)}^{2} \times\cancel7x = 1584 \: {cm}^{3} \\ \\\implies\sf22 \times9 {x}^{2} \times x = 1584 \: {cm}^{3} \\ \\\implies\sf22 \times 9 {x}^{3} = 1584 \: {cm}^{3} \\ \\\implies\sf {x}^{3} =\cancel\dfrac{1584 \:{cm}^{3} }{22}\times\dfrac{1}{9}\\

\begin{array}{r|l} &\sf 72 \\\cline{1-2} 22& 1\:5\:8\:4\\ &1\:5\:4 \\ \cline{2-2} & \quad\:\:4\:4\\&\quad\:\:4\:4\\\cline{2-2}&\quad\:\boxed{0\:0}\end{array}

\implies\sf {x}^{3} =\cancel{72\: {cm}^{3}}\times\dfrac{1}{\cancel9}\\\\\implies\sf {x}^{3} = 8 \: {cm}^{3} \\ \\\implies\sf x =  \sqrt[3]{8 \: {cm}^{3}} \\ \\\implies\sf x = \sqrt[3]{2 \:cm \times 2 \:cm \times 2 \:cm} \\ \\\implies \green{\sf x = 2\:cm}

\rule{300}{2}

D I M E N S I O N S :

↠ Radius = 3x = 3(2 cm) = 6 cm

↠ Height = 7x = 7(2 cm) = 14 cm

Therefore, Radius and Height of cylinder is 6 cm and 14 cm respectively.

Answered by Anonymous
75

Answer:

\large\boxed{\sf{Radius=6\:cm\:,\:Height=14\:cm}}

Step-by-step explanation:

It's being given that the radius and height of a cylinder are in the ratio 3:7.

Let the radius and height of cylinder are \sf{'r'} and \sf{'h'} respectively.

Therefore, we have the relation,

 \sf{ =  >  \frac{r}{h}  =  \frac{3}{7} } \\  \\ \sf{  =  > r =  \frac{3}{7} h \:  \:  \:  \:  \: ..........(1)}

Also, the volume is \sf{1584\:{cm}^{3}}.

Therefore, we have the relation,

  \sf{=  > \pi {r}^{2} h = 1584} \\  \\  \sf{ =  > \pi {( \frac{3}{7} h)}^{2} h = 1584 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: from  \: (1)} \\  \\   \sf{=  >  {h}^{3}  =  \frac{1584 \times 49 \times 7}{22 \times 9} } \\  \\  \sf{ =  >  {h}^{3}  = 8 \times 49 \times 7 }\\  \\  \sf{ =  >  {h}^{3}  =  {(2 \times 7)}^{3}}  \\  \\  \sf{ =  >  {h}^{3}  =  {(14)}^{3} } \\  \\   \sf{=  > h = 14 \: cm}

Thus height is 14 cm

Therefore radius will be,

  \sf{=  > r =  \frac{3}{7}  \times 14} \\  \\ \sf{  =  > r = 3 \times 2 }\\  \\   \sf{=  > r = 6 \: cm}

Thus radius is 6 cm.

Similar questions