Math, asked by manmit46, 1 year ago

the radius and slant height of a cone are in the ratio 3:5 and its curved surface area is 423.9 cm^2. find the volume of the cone.(π=3.14)​

Answers

Answered by nain31
5

Given,

Curved surface area =  \mathsf{423.9 \: cm^{2}}

Radius of cone and slant height are in ratio = \mathsf{3:5}

let the common ratio be  \mathsf{x}

So the ratio becomes like,

 \mathsf{3x \: and \: 5x}

 \large \boxed{\mathsf{Curved \: surface \: area= \pi \times r \times l}}

where r is radius and l is slant height.

so ,on placing values,

 \mathsf{423.9 = 3.14 \times 3x\times 5x}

 \mathsf{423.9 = 47.1 x^{2}}

 \mathsf{\dfrac{423.9}{47.1}= x^{2}}

 \mathsf{9 =x^{2}}

\mathsf{\sqrt{9} = x}

 \large \boxed{\mathsf{x= 3}}

So ,

Radius =  \mathsf{3 \times 3 = 9cm}

Slant height =  \mathsf{5 \times 3 = 15cm}

So,

Height = ?

Base (radius) = 9 cm

Hypotenuse(Slant height) = 15 cm

By Pythagoras theorem ,

Hypotenuse^{2}= base^{2}+Height^{2}

\mathsf{15^{2}= 9^{2}+Height^{2}}

\mathsf{225 = 81 +Height^{2}}

\mathsf{225-81 =Height^{2}}

\mathsf{144 =Height^{2}}

\mathsf{\sqrt{144} =Height}

\large \boxed{\mathsf{12 cm = Height}}

FOR VOLUME,

 \large \boxed{\mathsf{Volume= \pi \times r^{2} \times h}}

 \mathsf{Volume= 3.14 \times 9^{2} \times 12}

 \mathsf{Volume= 3.14 \times 81 \times 12}

\large \boxed{\mathsf{Volume=3052.08 cm^{2}}}


Swetha02: @nain31, I am @Shruthi123456
INBOX please
nain31: =_=
Swetha02: :(
Swetha02: Sorry na
Swetha02: Oye
Swetha02: Please
Swetha02: Trust me, I am @Shruthi123456
Similar questions