The radius and slant height of a cone are in the ratio
8:17. If its curved surface area is 5441 cm”, then find
3
its volume.
(a) 2560 cm3
(c) 26701 cm
(b) 27607 cm
(d) 25601 cm
3
Answers
Answer:
Let's take r=8xr=8x , and l=17xl=17x .
The CSA is given as 54\pi cm^{2}54πcm
2
.
CSA=\pi rlCSA=πrl
54\pi=\pi rl54π=πrl
We can cancel the \piπ :
54=rl54=rl
54=8x \times 17x54=8x×17x
54=136x^{2}54=136x
2
x^{2}=\frac{54}{136}x
2
=
136
54
x=\sqrt{\frac{27}{68}}x=
68
27
Radius:
r=8xr=8x
r=8 \times \sqrt{\frac{27}{68}}r=8×
68
27
r \approx 5.041r≈5.041
Slant height:
l=17xl=17x
l=17 \times \sqrt{\frac{27}{68}}l=17×
68
27
l \approx 10.712l≈10.712
We must also find the height to find the volume.
h^{2}=l^{2}-r^{2}h
2
=l
2
−r
2
h=\sqrt{l^{2}-r^{2}}h=
l
2
−r
2
h=\sqrt{10.712^{2}-5.041^{2}}h=
10.712
2
−5.041
2
h \approx 9.451h≈9.451
Now, we need to find the volume, which is \frac{1}{3}\pi r^{2} h
3
1
πr
2
h
V=\frac{1}{3}\pi r^{2} hV=
3
1
πr
2
h
r \approx 5.041r≈5.041 and h \approx 9.451h≈9.451
V=\frac{1}{3}\pi \times 5.041^{2} \times 9.451V=
3
1
π×5.041
2
×9.451
V=\pi \times 25.411 \times 3.15V=π×25.411×3.15
V=251.467 cm^{3}V=251.467cm
3
Therefore, the volume is 251.467 cm^{3}cm
3
.
Answer:
let the radius and the slant height of the cone be 8x and 17 x respectively
height of the cone = l =√r²+h²= √17 x²-8x² = 15 x
the csa of the cone = πrl sq. units
=22/7 *8x*17 x =544π = x²= 4 and x =2
radius of a cone = 30 cm
volume of a cone = 1/3 πr²h =1/3 π(16)²*30 = 2560 πcm³
therefore the correct option is a
hope it will help!!