Math, asked by eshamaan345, 5 months ago

The radius and slant height of Cone is 2 cm and 6cm respectively its curved surface

area is ……….........cm².

a) 12 π b) 4 π c) 8 π d) 6 π​

Answers

Answered by kavyasujith
8

Answer:

a) 12pie

Step-by-step explanation:

CSA of cone = pie×r×l

=pie×2×6

=pie12

THIS IS THE CORRECT ANSWER

HOPE IT HELPS U

PLEASE THANK MY ANSWER AND MARK IT AS BRAINLIEST

Answered by SarcasticL0ve
26

\sf Given \begin{cases} & \sf{Radius\:of\:cone = \bf{2\;cm}}  \\ & \sf{Slant\:height\:of\:cone = \bf{6\:cm}}  \end{cases}\\ \\

To find: Curved Surface Area of cone?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\setlength{\unitlength}{1.6mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(16,1.6){\sf{2 cm}}\put(22,10){\sf{6 cm}}\end{picture}

⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Curved\:surface\:area_{\;(cone)} = \pi rl}}}}\\ \\

where,

  • r = radius = 2 cm
  • l = Slant height = 6 cm

⠀⠀⠀

\dag\;{\underline{\frak{Putting\:values\:in\:formula,}}}\\ \\

:\implies\sf CSA_{\;(cone)} = \pi \times 2 \times 6\\ \\

:\implies\sf CSA_{\;(cone)} = \pi \times 12\\ \\

:\implies{\underline{\boxed{\frak{\purple{CSA_{\;(cone)} = 12 \pi cm^2 }}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Curved\:surface\: area\:of\:cone\:is\: \bf{12 \pi\:or\: 37.714\:cm^2}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Formulae\:related\:to\:cone :}}}}}\mid}\\\\

  • \sf Area\:of\:base = \bf{\pi r^2}

  • \sf Curved\:surface\:area\:of\:cone = \bf{\pi rl}

  • \sf Total\:surface\:area\:of\:cone = Area\:of\:base + CSA = \pi r^2 + \pi rl = \bf{\pi r(r + l)}

  • \sf Volume\:of\:cone = \bf{\dfrac{1}{3} \pi r^2 h}
Attachments:
Similar questions