Math, asked by brainlyba, 6 months ago

The radius and slant height of Cone is 2 cm and 6cm respectively its curved surface

area is ……….........cm²​

Answers

Answered by itzpriya22
10

\sf Given \begin{cases} & \sf{Radius\:of\:cone = \bf{2\;cm}}  \\ & \sf{Slant\:height\:of\:cone = \bf{6\:cm}}  \end{cases}\\ \\

To find: Curved Surface Area of cone?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Curved\:surface\:area_{\;(cone)} = \pi rl}}}}\\ \\

where,

r = radius = 2 cm

l = Slant height = 6 cm

⠀⠀⠀

\dag\;{\underline{\frak{Putting\:values\:in\:formula,}}}\\ \\

:\implies\sf CSA_{\;(cone)} = \pi \times 2 \times 6\\ \\

:\implies\sf CSA_{\;(cone)} = \pi \times 12\\ \\

:\implies{\underline{\boxed{\frak{\purple{CSA_{\;(cone)} = 12 \pi cm^2 }}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Curved\:surface\: area\:of\:cone\:is\: \bf{12 \pi\:or\: 37.714\:cm^2}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Formulae\:related\:to\:cone :}}}}}\mid}\\\\

\sf Area\:of\:base = \bf{\pi r^2}

\sf Curved\:surface\:area\:of\:cone = \bf{\pi rl}

\sf Total\:surface\:area\:of\:cone = Area\:of\:base + CSA = \pi r^2 + \pi rl = \bf{\pi r(r + l)}

\sf Volume\:of\:cone = \bf{\dfrac{1}{3} \pi r^2 h}

Attachments:
Similar questions