Math, asked by MARSHMALLO34, 4 months ago

The radius and the height of a cylinder are in the ratio 7 : 3. If the volume of the cylinder is
12474 cm find the curved surface area and the total surface area of the cylinder.
please help me​

Answers

Answered by VashitvaGupta
0

Answer:

Let r,h be radius & hight of cylinder 

   ⇒volume=πr2h,Total surface area (T.S.A)=2πr(h+r)

Given. hr=27⇒h=72r

Volume =πr2h=8316⇒πr2(72r)=8316

   ⇒r3=2×228316×7×7=2×2273×1188=73×33

    ⇒r=7×3=21cm⇒h=72×21=6cm

T.S.A=2πr=(h+r)=2×722×21(6+21)=44×3×27

                                                                           =3564cm2

Step-by-step explanation:

please MARK as the BRAINLIEST and become my follower

Answered by Anonymous
4

Let,

  • Radius is 7x cm
  • Height is 3x cm

Volume of Cylinder

  •  \boxed{\sf\green{V = π r²h}}

Here :

  • Value of π is  \bf \frac{22}{7}
  • Volume of Cylinder is 12474 (given)
  • r is Radius = 7x (given)
  • h is Height = 3x (given)

Putting these values in given formula

 \longrightarrow \boxed{ \bf \: V = \pi \: rh} \\  \\   \rightarrow \sf \: 12474 =  \frac{22}{7} (7x) {}^{2}  \times 3x \\  \\ \rightarrow \sf 12474 =  \frac{22}{ \cancel7}  \times \cancel{ 49}x {}^{2}  \times 3x \\  \\ \rightarrow \sf {x}^{3}  =  \frac{12474}{22 \times 7 \times 3}  \\  \\ \rightarrow \sf {x}^{3}  =  \frac{ \cancel{81}}{ \cancel{3}}  \\  \\ \rightarrow \sf {x}^{3}  = 27 \\  \\ \rightarrow \sf \: x =  \sqrt[3]{27}  \\  \\ \rightarrow \sf \pink{\boxed{\bf \green{ x= 3}}}

  • Radius = 7x ⇒ 7 × 3 = 21 cm
  • Height = 3x ⇒3 × 3 = 9 cm

Curved Surface area of Cylinder

  •  \boxed{ \green{\sf 2π rh}}

Here :

  • r is Radius = 21 cm
  • Value of π =  \bf \frac{22}{7}
  • h is Height = 9cm

Putting these values in given formula

 \longrightarrow \boxed{ \sf2\pi \: rh} \\  \\ \rightarrow \sf2 \times  \frac{22}{ \cancel{7}}  \times \cancel{ 21 }\times 9 \\  \\ \rightarrow \sf44 \times 27 \\  \\ :   \implies \red{ \boxed{ \green{ \bf1188 \sf \: cm {}^{2} }}}

Total Surface Area of Cylinder

  •  \boxed{\green{\sf 2π r (h + r) }}

Here :

  • r is Radius = 21 cm
  • Value of π =  \bf \frac{22}{7}
  • h is Height = 9cm

Putting these values in given formula

 \longrightarrow \boxed{ \sf \: 2\pi \: r \: (h + r)}  \\  \\   \rightarrow \sf \: 2 \times  \frac{22}{ \cancel7}  \times \cancel{ 21}(9 + 21) \\  \\ \rightarrow \sf2 \times 22 \times 3(30) \\  \\ \rightarrow \sf44 \times 90 \\  \\  :  \implies \sf \red{ \boxed{  \green{\bf \: 3960 \sf \: cm {}^{2}  \:}}}

•••♪♪

Similar questions