The radius and the height of right circular come are in the ratio 5:12 and it's volume is 314 cubic metre , then find the slant height of the cone
Answers
Answered by
5
For this we need to find radius and height.
Let radius be 5x and height be 12x respectively
So, we know,
Volume of cone ⇒ 1/3πr²h
⇒ 1/3π(5x)²(12x) = 314
⇒ 3.14(25x²)(12x) = 314 × 3
⇒ x³ = 314 × 3/3.14×25×12
⇒ x³ = 1
⇒ x = 1
So, Radius = 5 × 1 = 5 cm
Height = 12 × 1 = 12 cm
We know,
Slant height = √(r)² + (h)²
= √(5)² + (12)²
= √25 + 144
= √169
= 13 cm
∴ Slant height of cone = 13 cm
Let radius be 5x and height be 12x respectively
So, we know,
Volume of cone ⇒ 1/3πr²h
⇒ 1/3π(5x)²(12x) = 314
⇒ 3.14(25x²)(12x) = 314 × 3
⇒ x³ = 314 × 3/3.14×25×12
⇒ x³ = 1
⇒ x = 1
So, Radius = 5 × 1 = 5 cm
Height = 12 × 1 = 12 cm
We know,
Slant height = √(r)² + (h)²
= √(5)² + (12)²
= √25 + 144
= √169
= 13 cm
∴ Slant height of cone = 13 cm
Similar questions