Math, asked by khatoontalat90, 4 months ago

the radius and the hight of a cone are in the ratio 4:3. The ratio of the curved surface area to the total surface area of a cone.
(a)5:9
(b)3:7
(c)5:4
(d)16:9​​

Answers

Answered by Anonymous
61

 \small \underline \bold{For \: a \: Cone}-

 \large \underline \bold{Given :-}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf\pink{\dfrac{r}{h} = \dfrac{4}{3}}

 \large \underline \bold{To \: Find :-}

\: \: \: \: \: \: \sf\red{\dfrac{CSA \: of \: Cone}{TSA \: of \: Cone} = \: ?}

 \large \underline \bold{Using \: Formulas :-}

\: \: \: \: 1) \sf\pink{Curved \: Surface \: Area = \pi r l}

\: \: \: \: 2) \sf\pink{Total \: Surface \: Area = \pi r(r + l)}

\: \: \: \: 3) \sf\pink{Slant \: height =\sqrt{(r^{2} + h^{2})}}

 \small \bold{Here \: ,}

\: \: \: \: \: \: \: \: \: \sf{r = radius \: of \: cone}

\: \: \: \: \: \: \: \: \: \sf{h = perpendicular \: height}

\: \: \: \: \: \: \: \: \: \: \sf{l = Slant \: height}

 \large \underline \bold{Solution :-}

\: \: \: \: \: \: \: \: \: \: \sf{r = 4}

\: \: \: \: \: \: \: \: \: \:  \sf{h = 3}

\sf{then \: ,}

\: \: \: \: \: \sf{l =\sqrt{4^{2} + 3^{2}}}

\: \: \: \: \: \sf{l =\sqrt{16 + 9} =\sqrt{25}}

\: \: \: \: \: \sf{l = 5}

\sf{Now \: -}

\: \: \: \: \: \: \:  \small \bold{\dfrac{CSA \: of \: Cone}{TSA \: of \: Cone}}

\: \: \: \: \: \sf{= \dfrac{\cancel{\pi} \cancel{r} l}{\cancel{\pi} \cancel{r} (r + l)}}

\: \: \: \: \: \sf{= \dfrac{l}{(r + l)}}

\: \: \: \: \: \sf{= \dfrac{5}{(4 + 5)}}

\: \: \: \: \: \sf{= \dfrac{5}{9}}

 \large \underline \bold{Result :-}

\: \: \: \sf\blue{CSA \: of \: cone \: : \: TSA \: of \: cone = 5 \: : \: 9}

Similar questions