Math, asked by desiboy8181, 4 months ago

the radius of 2 cylinder are in ratio 5:7 and heights are in ratio 3:5 the ratio of there csa is​

Answers

Answered by BrainlyFlash
3

{\huge{\star{\underbrace{\tt{\red{Answer}}}}}}{\huge{\star}}

\Large{\blue{\tt{\underline{\underline{Given \ :-}}}}}

{\sf{☞  \ r_{1}:r_{2} \ = \ 5:7}}

{\sf{☞  \ h_{1}:h_{2} \ = \ 3:5}}

\Large{\green{\tt{\underline{\underline{To \ find \ :-}}}}}

{\bold{•  \ Ratio \ of \ CSA}}

\Large{\orange{\tt{\underline{\underline{Solution \ :-}}}}}

{\tt{Let \ the \ radius \ of \ cylinder \ be \ 5x \ and \ 7x}}

{\tt{Also   , \ let \ the \ height \ of \ both \ cylinder  \ be }}\\ {\tt{3x \ and \ 5x}}

 {\sf{↣ \ \frac{r1}{r2}  =  \frac{3x}{5x} }}

 {\sf{↣ \ \frac{h1}{h2}  =  \frac{3x}{5x} }}

{\sf{↣ \  \frac{csa1}{csa2}  =  \frac{2\pi \times  \: r1 \times h1}{2\pi \times  \: r2 \times h2}}}

 {\sf{↣ \ \frac{csa1}{csa2}  =  \frac{5x \times 3x}{7x \times 5x}}}

 {\sf{↣ \ \frac{CSA_{1}}{CSA_{2}}  =  \frac{3}{7}}}

{\sf{\boxed{CSA_{1}:CSA_{2} \ = \ 3:7}}}

 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\Large\mathcal{\fcolorbox{lime}{black}{\red{Hope it's help  ⚓⚓}}}

\large\mathcal{\fcolorbox{yellow}{teal}{\orange{Please mark me as brainliest (. ❛ ᴗ ❛.)}}}

Similar questions