Math, asked by desiboy8181, 4 months ago

the radius of 2 cylinder are in ratio 5:7 and heights are in ratio 3:5 the ratio of there csa is​

Answers

Answered by Mysterioushine
38

Given :

  • Ratio of radius of two cylinders = 5 : 7
  • Ratio of the heights of cylinders = 3 : 5

To Find :

  • The Ratio of CSA of cylinders

Solution :

Let the ratio constant be "x" . Then the radius of the two cylinders becomes ,

  • 5x and 7x

Let the ratio constant (in height's ratio) be "y". Then the heights of two cylinders becomes ,

  • 3y and 5y

Curved surface area of cylinder is given by ,

 \\  \star \: {\boxed{\purple{\sf{CSA_{(cylinder)} =2\pi  rh }}}} \\  \\

Where ,

  • r is radius of cylinder
  • h is height of cylinder

By the given data ,

  • Radius and height of first cylinder is 5x and 3y
  • Radius and height of second cylinder is 7x and 5y.

First let us calculate the CSA of first cylinder,

 \\ :   \implies \sf \: CSA_{(cylinder_1)} = 2 \pi(5x)(3y) \: ........(1) \\  \\

The CSA of second cylinder is ,

 \\ :   \implies \sf \:CSA_{(cylinder_2)} = 2\pi(7x)(5y)  \: ........(2)\\  \\

Now , Taking ratio ;

 \\  :  \implies \sf \:CSA_{(cylinder_1)} :  \: CSA_{(cylinder_2)} = 2\pi(5x)(3y) :  \: 2\pi(7x)(5y)

  \\  :  \implies \sf \:CSA_{(cylinder_1)} :  \: CSA_{(cylinder_2)} = (5x)(3y) :  \: (7x)(5y) \\  \\

 \\  :  \implies \sf \:CSA_{(cylinder_1)} :  \: CSA_{(cylinder_2)} = 15xy :  \:35xy\\  \\

 \\  :  \implies \sf \:CSA_{(cylinder_1)} :  \: CSA_{(cylinder_2)} = 15 : 35 \\  \\

 \\  :  \implies{\underline{\boxed{\pink{ \sf{\:CSA_{(cylinder_1)} :  \: CSA_{(cylinder_2)} =3 :  7}}}}}  \: \bigstar\\  \\

Hence ,

  • The Ratio of CSA's of two given cylinders is 3 : 7.
Answered by Expert0204
4

Answer:

Given :

Ratio of radius of two cylinders = 5 : 7

Ratio of the heights of cylinders = 3 : 5

To Find :

The Ratio of CSA of cylinders

Solution :

Let the ratio constant be "x" . Then the radius of the two cylinders becomes ,

5x and 7x

Let the ratio constant (in height's ratio) be "y". Then the heights of two cylinders becomes ,

3y and 5y

Curved surface area of cylinder is given by ,

\begin{gathered} \\ \star \: {\boxed{\purple{\sf{CSA_{(cylinder)} =2\pi rh }}}} \\ \\ \end{gathered} </p><p>⋆ </p><p>CSA </p><p>(cylinder)</p><p>	</p><p> =2πrh</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>Where ,</p><p></p><p>r is radius of cylinder</p><p>h is height of cylinder</p><p>By the given data ,</p><p></p><p>Radius and height of first cylinder is 5x and 3y</p><p>Radius and height of second cylinder is 7x and 5y.</p><p>First let us calculate the CSA of first cylinder,</p><p></p><p>\begin{gathered} \\ : \implies \sf \: CSA_{(cylinder_1)} = 2 \pi(5x)(3y) \: ........(1) \\ \\ \end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> =2π(5x)(3y)........(1)</p><p>	</p><p> </p><p></p><p>The CSA of second cylinder is ,</p><p></p><p>\begin{gathered} \\ : \implies \sf \:CSA_{(cylinder_2)} = 2\pi(7x)(5y) \: ........(2)\\ \\ \end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =2π(7x)(5y)........(2)</p><p>	</p><p> </p><p></p><p>Now , Taking ratio ;</p><p></p><p>\begin{gathered} \\ : \implies \sf \:CSA_{(cylinder_1)} : \: CSA_{(cylinder_2)} = 2\pi(5x)(3y) : \: 2\pi(7x)(5y)\end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> :CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =2π(5x)(3y):2π(7x)(5y)</p><p>	</p><p> </p><p></p><p>\begin{gathered} \\ : \implies \sf \:CSA_{(cylinder_1)} : \: CSA_{(cylinder_2)} = (5x)(3y) : \: (7x)(5y) \\ \\ \end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> :CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =(5x)(3y):(7x)(5y)</p><p>	</p><p> </p><p></p><p>\begin{gathered} \\ : \implies \sf \:CSA_{(cylinder_1)} : \: CSA_{(cylinder_2)} = 15xy : \:35xy\\ \\ \end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> :CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =15xy:35xy</p><p>	</p><p> </p><p></p><p>\begin{gathered} \\ : \implies \sf \:CSA_{(cylinder_1)} : \: CSA_{(cylinder_2)} = 15 : 35 \\ \\ \end{gathered} </p><p>:⟹CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> :CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =15:35</p><p>	</p><p> </p><p></p><p>\begin{gathered} \\ : \implies{\underline{\boxed{\pink{ \sf{\:CSA_{(cylinder_1)} : \: CSA_{(cylinder_2)} =3 : 7}}}}} \: \bigstar\\ \\ \end{gathered} </p><p>:⟹ </p><p>CSA </p><p>(cylinder </p><p>1</p><p>	</p><p> )</p><p>	</p><p> :CSA </p><p>(cylinder </p><p>2</p><p>	</p><p> )</p><p>	</p><p> =3:7</p><p>	</p><p> </p><p>	</p><p> ★</p><p>	</p><p> </p><p></p><p>Hence ,</p><p></p><p>The Ratio of CSA's of two given cylinders is 3 : 7.</p><p>

Similar questions