Math, asked by ashutoshkumar78, 4 days ago

The radius of a bus is 0.70m. how much distance will it cover in 1000 revolution​

Answers

Answered by Anonymous
50

 \star \; {\underline{\boxed{\color{cyan}{\pmb{\sf{ \; Given \; :- }}}}}}

  • Radius of wheel = 0.70 m
  • No. of Revolutions = 1000

 \\ \\

 \star \; {\underline{\boxed{\pink{\pmb{\sf{ \; To \; Find \; :- }}}}}}

  • Distance Covered = ?

 \\ \\

 \star \; {\underline{\boxed{\red{\pmb{\sf{ \; SolutioN \; :- }}}}}}

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Circumference = 2 \pi r }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \maltese Calculating the Circumference of Wheel :

 {\dashrightarrow{\qquad{\sf{ Circumference = 2 \pi r }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = 2 \times \dfrac{22}{7} \times 0.70 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \cancel2 \times \dfrac{22}{7} \times \dfrac{70}{\cancel{100}} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \dfrac{22}{\cancel7} \times \dfrac{\cancel{70}}{50} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \dfrac{22 \times 10}{50} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \dfrac{220}{50} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \cancel\dfrac{220}{50} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Circumference = \cancel\dfrac{22}{5} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Circumference = 4.4 \; m }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \maltese Calculating the Distance Covered :

 {\longmapsto{\qquad{\sf{ Distance \; Covered = Circumference \times No. \; of \; Revolutions }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Distance \; Covered = 4.4 \times 1000 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\purple{\pmb{\frak{ Distance \; Covered = 4400 \; m }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \maltese Therefore :

❛❛ The bus will travel 4400 m if the wheel takes 1000 revolutions . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions