Math, asked by mokshkulshrestha, 2 months ago

the radius of a circle is 10 cm and a chord ofa circle is 12 cm in length. Find the distance of

the chord from the centre of the circle.​

Answers

Answered by manasnagarkris52
0

Answer:

gndkyrhmxjydn

dku5wfkuifiyx

Step-by-step explanation:

44 answer

Answered by Yugant1913
8

\huge\sf\mathbb\color{yello} \underline{\colorbox{re}{☯SoLuTiOn☯࿐}}

∴ \:  \:  \: AB=10cm

 \:  \:  \:  \: OC⊥AB \: , OC  \:  \: bisects \:  \:  AB \:  \:

∴  \:  \:  \:  \:  \: AC  =  \frac{AB}{2} =  \frac{10}{2}   = 5cm \:  \\

 \:  \:  \: ∴ \:  \:  \:  In \:  ΔAOC \: , ∠C = {90}^{0}

∴  \:  \: AO² \: = \: AC² \: + \: OC²

</p><p> \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [ Pythagorean \:  theorem]

 \:  \:  \:  \:  \:  {r}^{2}  =  {5}^{2}  +  {12}^{2}

 \:  \:  \:  \:  \:  {r}^{2}  = 25 + 144

 \:  \:  \:  \:  \:  {r}^{2}  = 165

∴ \:  \:  \:  \: r = ± \sqrt{165}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: r  \:  =  \:  \:  \: 13cm

Attachments:
Similar questions