Math, asked by student4567, 4 months ago

The radius of a circle is 8 cm and the distance from the center to chord is 6 cm. Find the length of the  chord.​

Answers

Answered by FOXDON
0

Let O be the center of the circle .

From O draw OM⊥AB and ON⊥CD

In △AOM

AM=21AB=21×8=4cm

OM2=AO2−AM2

⇒OM=(5)2−(4)2

⇒OM=25−16

⇒OM=9=3cm

In △CON

CN=21CD=21×6=3cm

ON2=CO2−CN2

⇒ON=(5)2−(3)2

⇒ON=25−9

⇒ON=16=4cm

please mark me as brain list❤

Answered by ravi2303kumar
1

Answer:

≈  10.6 cm

Step-by-step explanation:

Given radius, r = 8cm

distance from the cenre to the chord = 6cm

=> a right angled triangle is formed with hypotenuse 8cm (radius) and one of the sides as 6cm (distance from centre)

=> other side of the triangle = \sqrt{r^2 - d^2}    units    (by pythagorous theorem)

                                              = \sqrt{8^{2}  - 6^{2} } cm

                                              = \sqrt{64  - 36 } cm

                                              = \sqrt{28 } cm

                                              = \sqrt{4 \times 7 } cm

                                              = \sqrt{2^2 \times 7 }  cm

                                              = 2 \sqrt{7 } cm  

which is half of the length of the chord

=> length of the chord = 2 x 2 \sqrt{7 } cm

                                     = 4\sqrt{7 } cm

                                     ≈  4 x 2.646 cm

                                     ≈  10.584 cm

                                     ≈  10.6 cm

                                             

         

     

Similar questions