Math, asked by snehakashyap3767, 10 months ago

The radius of a come is 75% of its height . If the conical tank occupies 4116000 litres of water , find the curved surface area of the conical tank .

Answers

Answered by madeducators4
1

Given :

Vol of water occupied by the conical tank =4116000 l

Radius of cone = 75% of height of the cone

To Find :

Curved surface area of the cone = ?

Solution :

Let the height of the conical tank  be = h

And the radius of the conical be = r

Since radius is 75% of height cone , so :

r = \frac{75}{100}h

r =\frac{3}{4}h

We know that volume  of cone or conical tank is = \frac{1}{3}\pi r^2h

Since we have :

v = 4116000 l

V= 4116 m^3

So, \frac{1}{3}\pi r^2h= 4116 m^3

Or, \pi (\frac{3h}{4})^2h = 3 \times 4116

Or, \pi h^3 \times 9 = 16 \times 3 \times 4116

Or, h^3 =\frac{4116 \times 16 \times 3 }{9 \pi}

Or, h = 19.12

So, r  = \frac{3}{4}\times 19.12

  r = 14.34 m

We know that formula for CSA of a cone is = \pi r l

So, we have to find the slant height (l) of the cone :

l = \sqrt{h^2 + r^2}

l = \sqrt{(14.34)^2 + (19.12)^2}

l = \sqrt {205.63 + 365.57}

l = \sqrt{571.204}

So, l = 23.9

Now , CSA = \pi r l

Or, CSA = 3.14 \times 14.34 \times 23.9

So, CSA = 1076 m^2

Hence , CSA of cone is 1076 m^2 .

Answered by sanjeevk28012
1

Given :

The radius of cone = 75% of height of cone

The volume of water occupied = V = 4116000 liters = 4116 × 10^{6}  cm³

To Find :

The Curved surface area of conical tank

Solution :

Let The height of cone = h cm

The radius of cone = r = 75% of height

                                  r = 0.75 h

∵  Volume of conical tank = V = \dfrac{1}{3} × π × radius² × height

Or,  V = \dfrac{1}{3} × π × r² × h

Or,  4116 × 10^{6}  cm³ = \dfrac{1}{3} × 3.14 × (0.75 h)² × h

Or, 4116 × 10^{6}  cm³ = \dfrac{1}{3} × 3.14 × 0.5625  × h³

Or,  4116 × 10^{6}  cm³ = 0.58875  × h³

∴   h³ = \dfrac{4116\times 10^{6}}{ 0.58875}

i.e   h³ = 6991082803

Or,   h = \sqrt[3]{6991082803}

Or, Height = h = 1912.11 cm

So , Radius = 0.75 × 1912.11 cm

                  = 1434.08 cm

Again'

∵  Curved surface area of cone = A = π × radius × lateral height

And

Lateral height = l = \sqrt{radius^{2}+height^{2}  }

                           = \sqrt{(1434.08)^{2}+(1912.11)^{2}  }

                           = \sqrt{2056585.4+3656164.65}

                           = 2390.1  cm

So,   Curved surface area of cone = π × radius × lateral height

                                                         = 3.14 × 1434.08 cm × 2390.1 cm  

                                                         = 10762647.07 cm²

Hence, The Curved surface area of cone is 10762647.07 cm²  Answer

Similar questions